Apprentissage pour une robotique autonomme
En informatique, l'apprentissage automatique a défini un ensemble de techniques statistiques éprouvées que l'on peut dans une certaine mesure rapprocher de formes d'apprentissage dans le vivant.
Cependant, leur mise en oeuvre en robotique autonome met en lumière un certain nombre de faiblesses pour assurer l'autonomie de l'agent. Le but de ce cours est de revisiter ces techniques à la lumière de données des neurosciences et des sciences sociales pour présenter des algorithmes permettant des apprentissages en autonomie, par simple interaction avec l'environnement et avec des critères de survie définis a priori.
Pour chaque forme d'apprentissage, après un rappel des formes classiques d'apprentissage automatique, des critères d'autonomie sont définis et des données biologiques et comportementales sont introduites, permettant de définir des formes plus plausibles biologiquement et intégrant une vue systémique plus globale du vivant.
📄️ Apprentissage Sensorimoteur
Que signifie apprendre à partir des informations sensorielles et des moteurs ? L'objectif de cette partie sera d'apprendre des catégories, des concepts et des règles permettant d'évoluer en autonomie.