
Non-linear systems of equations / Newton-Raphson method 1

Project 4

Non-linear systems of equations / Newton-
Raphson method

Group 2 - Team 8630

Responsible : MAGON Eloi
Secretary : DECOU Nathan
Coders : DELPEUCH Sébastien RIDACKER Vincent

STAN Sophie

Abstract: The idea of this project is to implement nonlinear system solving using the Newton-Raphson

method and then apply it to the resolution of concrete problems such as Lagrange points or the elctrostatic

equilibrum.

1 Implementation of the Newton Raphson method

Nathan Decou

The �rst part of the project consists in implementing a method to solve a non-linear system. For
this purpose the Newton-Raphson method has been implemented. This method is iterative, it allows
to realize successive approximations of the equation f(x) = 0. And generalizing about �nding a root
of a function f : Rn → Rm. Let U be a vector, f(U) the application of f to this vector, H the Jacobian
matrix of f and a V vector such that f(U + V) = 0 then using Taylor-Lagrange decomposition of f
we can easily deduce the relationship

H(U)× V = −f(U) (1)

This relationship will be the basis of the Newton-Raphson algorithm.

1.1 Implementation of the generic method

To start a basic Newton-Raphson method has been implemented. It does not look at each iteration
whether it converges to the solution or not.

1.1.1 Theoretical elements of the Newton-Raphson method

First, let's look at the theoretical operation of the method. It consists in introducing a sequence (xn)
of successive approximation of the equation f(x) = 0. The algorithm starts at a x0 ideally close to the
solution. Starting at x0, the new term x1 is chosen as follows : the trangent to Cf is drawn as x0, this
tangent intersects the abscissa axis in x1. This process is then repeated by calculating x2 in the same
way etc.The algorithm stops when we �nd a f(xn) lower than the requested precision or when the
maximum iteration number is reached. Mathematically this translates into the following recurrence
formula. For any n between 0 and N where N is the maximum iteration number we set and as long
as xn+1 > ε with ε the requested precision

xn+1 = xn −
f(xn)

f ′(xn)
(2)

Level of complexity of the algorithm depends on the input function. Indeed as long as we haven't
done N iteration loops and that f(xn) > ε, then the calculation of xn+1 is done etc. So, the complexity
can be easily bounded by the maximum number of iterations but also by the maximum number of
evaluation of f . Finally the complexity is bounded by N ×O(f).

A generalization of Newton-Raphson to n dimension can easily be done. The di�culty is in
obtaining the derivative of f at each iteration. This is not made not by a simple derivative but by using

the Jacobian of the function at one point of application. Moreover, where the calculation of
f(xn)

f ′(xn)
was

performed (assumed constant time), we must now use the equation 1. This changes the complexity
of the algorithm, in fact, every iteration it is necessary to call upon scipy.optimize.least_squares,
according to the documentation this function has the same complexity as an SVD decomposition seen
in the previous project, i.e. for a m × n matrix, O(m2n + n3). At . sum the complexity of the
Newton-Raphson method in dimension n rises to O(N × (m2n+ n3)×O(f)).

1.1.2 Test set-up for the generic method

Now that we have the methods and the theoretical elements, the tests can be implemented. These
tests are intended to highlight the proper functioning of the algorithm. For the implementation we

Team 8630 Numerical Algorithmic

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

Non-linear systems of equations / Newton-Raphson method 2

will de�ne two errors. First the forward error. x is the known root of f toward wich xn is supposed to
converge δf = ||x−xn||. The latter porvides us with information on the distance between the solution
root and the root that the algorithm is calculating at each iteration. We also de�ne the backward
error δb = ||f(xn)||. This one represents the norm of f(xn) where xn is the solution given by the
algorithm at each iteration. Since we want xn to be the root of f , this error should converge toward
0.

The graph 1 is thus plotted, the generic Newton-Raphson method is used on the function f : x 7→
x2 − 9 . First some generalities. The backward error (green curve) actually converges to 0. Moreover
the forward error (red curve) shows that the algorithm succeeds in �nding the solution with a precision
of 10−7.

A test on the Newton-Raphson method generalized to the n dimension was performed with the
following dimension 2 function f : (x, y) 7→ (x2 − y − 5, x × y − 12) in the �gure 2. Analogous to
dimension 1 the δb curve (green curve) converges towards 0 indicating that the algorithm converges
to the solution f(x, y) = (0, 0). And the δf curve (red curve) converges also towards 0 indicating that
the algorithm is converging to the true solution.

Figure 1: Plotting δb and δf for the function
x 7→ x2 − 9 using the Newton-Raphson method
with a required accuracy of 10−7

Figure 2: Plotting δb and δf for the function
(x, y) 7→ (x2 − y− 5, x× y− 12) using the generic
Newton-Raphson method with a required accu-
racy of 10−9

In conclusion, it has been shown that Newton-Raphson's method is functional to solve a non-linear
system, the latter functions both in dimension 1 and in dimension n and has a speed of quadratic
convergence.
Sébastien Delpeuch

1.2 Implementation of the method with backtracking

The generic implementation of the Newton-Raphson method is certainly functional but has a defect.
Indeed when the calculation of xn+1 is performed, the result can get away from the solution and
therefore slow down the algorithm.The idea of this section is to present a solution to this problem.
The �gures 4 and 3 quickly summarize the operation of newton-raphson with (left) and without (right)
backtracing. The right graph show that if a point found by the algorithm moves it away from the
solution, then it is not chosen.

Figure 3: Theorical summarize of Newton-
Raphson method without backtracking

Figure 4: Theorical summarize of Newton-
Raphson method with backtracking

1.3 Theoretical elements of the backtracking method

To solve this problem, implementing an algorithm with backtracking is e�ected. In other words, if
the element calculated from the xn+1 point away from the solution then it is not chosen and another

Team 8630 Numerical Algorithmic

Non-linear systems of equations / Newton-Raphson method 3

point is chosen such that f(xn+1) < f(xn). This makes it possible to be sure that at any moment the
algorithm converges towards the solution.

From a complexity point of view, it always depends on the complexity of the function. However, the
number of times the function is evaluated (in the case of the generic method the number of evaluation
was the number of iteration of the method) varies depending on the number of times backtracking is
called.

1.4 Tests and comparison of the two methods

After implementing the algorithm a check of the theoretical elements is imperative. The interest is
double, it is necessary to verify that the algorithm can produce a correct solution and check the theo-
retical gain. The de�nitions of the forward error δf and the bakward error δb are reused. The graphs
5 and 6 are then tracings. The curves representing δf (right green curve) and δb (left green curve)
for the solution with backtracking may lead to the same conclusion as before, i.e. the two converge
towards 0 (under 10−9) which assures us that the algorithm found correct the solution. Now let's
realize the comparison between δf for backtracking (right green curve) and for the normal algorithm
(right red curve) it is remarkable that the algorithm with bracktracking �nds the solution with an
accuracy of 10−10 in about 600 fewer iterations of the algorithm without backtracking. This proves
what has been theoretically advanced, the algorithm with backtracking comes close to the solution
much faster and avoids the remarkable oscillations on the curve on the right in red. Analogously, let's
look at δb for the backtracking (left green curve) and for the normal algorithm (left red curve). This
leads to the same conclusions as the forward error.

Figure 5: Plotting δb for the function (x, y) 7→
(x2−y−5, x×y−12) using the method with and
without backtracking with a required accuracy of
10−9

Figure 6: Plotting δf for the function (x, y) 7→
(x2−y−5, x×y−12) using the method with and
without backtracking with a required accuracy of
10−9

1.5 Limitations of the Method

Before moving on to the application of the
Newton-Raphson method some limitations will be
discussed. If the algorithm is used to �nd the root
of the function x ∈ R 7→ x2+1 taking a x0 = 0 or
x0 = 1, the suite does not converge, this is high-
lighted in the �gure 7. Indeed the backward error,
using the algorithm with (left) or without (right)
backtracking does not converge to 0. This means
that the algorithm does not converge to the so-
lution. It is easy to see this with backtracking,
when the algorithm reaches a backward error of
100 it is no longer able to get closer to 0. This
is due to the fact that the tangents to the curve
representing the x 7→ x2 + 1 function in 0 and in
1 intersect the x-axis in 1 and in 0 respectively. If
we take 0 or 1 as the starting point, the method
oscillates between these two points and therefore
does not converge.

Figure 7: Highlighting Non-Convergence on the
x 7→ x2 + 1 function

Eloi Magon

Team 8630 Numerical Algorithmic

Non-linear systems of equations / Newton-Raphson method 4

2 Computation of the Lagrangia points

Lagrangia points are space's positions near two large bodies in orbit. At these locations, the centripetal
forces of the two bodies balance out each other in a way that a smaller body would stay in the orbital
move of the two bodies. In this part, the previous methods are applied to set a calculus system of the
Lagrangia points.

2.1 Theoretical elements and Lagrange point equations

Let us de�ne the di�erent forces in place before getting into the Lagrangia points calculus. An analogy
with the Sun-Earth system is studied here, therefore the forces are modeled by R2 → R2 functions.
According to the Newton's third law of motion, the equilibrium points are points for which the sum
of the forces is equal to zero. Then, a list of the forces is made :

• Sun's attraction, noted f1 : Gravitationnal force originating from (0,0) and of parameter k = 1;

• Earth's attraction, noted f2 : Gravitationnal force originating from (1, 0) and of parameter
k = 0.01;

• Inertial force, noted f3 : A centrifugal force (i.e. two elastical forces without taking account of
gravity) originating from Earth's barycenter and of parameter k = 1;

The equations proposed are used to implement these forces. For each force a function with the
coe�cient k and the origin (x0, y0) for arguments is de�ned. A function for the Jacobian matrix is
also needed, that's why the partial derivatives are calculated for both the centrifugal and gravitationnal
forces.

Jc =
(
k 0
0 k

)
Jg =

2k(x− x0)2 − k(y − y0)2

((x− x0)2 + (y − y0)2)
5
2

k(x− x0)(y − y0)
((x− x0)2 + (y − y0)2)

5
2

k(x− x0)(y − y0)
((x− x0)2 + (y − y0)2)

5
2

2k(y − y0)2 − k(x− x0)2

((x− x0)2 + (y − y0)2)
5
2

Thanks to these functions the system F = f1 + f2 + f3 is de�ned, then it can be solved with the
Newton-Raphson algorithm.

The complexity of the algorithm is the complexity of Newton-Raphson, namely a linear complexity,
because the function in entry is of a constant complexity.

2.2 Solving the equation system by the Newton-Raphson method

In this section the results of the implementation are presented. First of all, criteria need to be de�ned
to monitor the correctness of the resolution. With this in mind, we use again the backward error δb
de�ned to control the algorithm convergence. The resuls are displayed in the �gure 8.

Figure 8: Relative error δb for the 5 resolution al-
gorithms using Newton Raphson with backtrack-
ing with a requested acuracy of 10−9

Figure 9: 5 Lagrangia points computed by the al-
gorithm

The �ve curves on the �gure 8 clearly converge towards 0. This implies that the �ve algorithms
�nd a point where the forces cancelled each other. Now, it's necessary to verify that all these points
are distinct from each other.

Team 8630 Numerical Algorithmic

Non-linear systems of equations / Newton-Raphson method 5

To do so, a visual monitoring has been realised : for each iteration of the Newton-Raphson algo-
rithm, the location (x, y) obtained is placed on a graph. The results are gathered in Figure 9, and
can be compared with a real represention here .

A visual analysis can now be realised. Firstly, the results on the �gure 9 ensure that the �ve
points found by the algorithm are distincts from each other, thereby there are �ve points where the
sum of the force is cancelled. The evolution of the algorithm can be seen in green on the Figure 9,
and the point it considers as a root, in red. The theorical location showed in the �gure and the real
representation of the �gure 9 clearly merge, thus con�rmating the correctness of our implementation.

To sum up, an application of the Newton-Raphson algorithm to the resolution of a non-linear
system has been presented.

Sophie Stan

3 Electrostatic equilibrium

Anoter use of non-linear equations lies in the research of electrostatic equilibrium.
Let us consider an interval [−1, 1] and two electric charges (positive or negative), one located at the
position -1 and the other one at 1. In addition, let us consider N other charges each positioned at
x1, x2, ..., xN . We assume that these charges can move freely in the given interval [−1, 1]. To start
with, let us examine the total electrostatic energy of this system:

E(x1, x2, ..., xN) =

N∑
i=1

log|xi + 1|+ log|xi − 1|+ 1

2

N∑
j=1 i 6=j

log|xi − xj | (3)

3.1 Computing the Jacobian matrix of the vector function

In order to determine the system's equilibrium points, it is necessary to �nd an extrema of the
previous fonction E. This boils down to use the Newton-Raphson algorithm in order to solve

the following system of non-linear equations:
∂E(x1, x2, ..., xn)

∂xi
= 0. This system is equivalent to

∂E(x1, x2, ..., xn)

∂xi
=

1

xi + 1
+

1

xi − 1
+

N∑
j=i i 6=j

1

xi − xj
. Thus, given this equation, it is easy to com-

pute the Jacobian matrix :
J(i,i) = −

1

(xi + 1)2
− 1

(xi − 1)2
−

N∑
i=j i6=j

1

(xi − xj)2
on the diagonal

J(i,j) =
1

(xi − xj)2
others coe�cients

(4)

3.2 Solving the equation system with the Newton-Raphson method

From now on, the Jacobian is ready to be used by the Newon-Raphson algorithm with backtraking.
Nevertheless, it is essential to make sure that the solutions given by the algorithm are realistic. To
that end, two functions δf and δb have been set up, and plotted with N = 3 (see Figures 10 and 11).

Figure 10: Forward distance δf plotting for the
function and the Jacobian modeling the electro-
static balance problem using Newton-Raphson
with backtracking with an required accuracy of
10−14

Figure 11: Backward distance δb plotting for
the function and the Jacobian modeling the elec-
trostatic balance problem using Newton-Raphson
with backtracking with an required accuracy of
10−14

Team 8630 Numerical Algorithmic

https://en.wikipedia.org/wiki/Lagrangian_point#/media/File:Lagrange_points_simple.svg
https://en.wikipedia.org/wiki/Lagrangian_point#/media/File:Lagrange_points_simple.svg

Non-linear systems of equations / Newton-Raphson method 6

The results are coherent since the backward error and the forward error (meaning the two curves),
during the execution of Newton-Raphson with backtracking, converge towards 0. This means that the
vector V found, is really closed to verify f(V) = 0. Thus, the solution found is closed to the actual
solution and it con�rms its validity.

Vincent Ridacker

3.3 Introduction to the Legendre polynomials

Now that the system to solve has been established, it is possible to put light on the link between the
extremum electrostatic problem and the Legendre polynomial. First of all, let us remind what it refers

to when E(n/2) = n/2 if n is even and (n−1)/2 if n is odd :
d

dx
[(1−x2) d

dx
Pn(x)]+(n+1)nPn(x) = 0

This polynomial can be written thanks to the Bonnet formula as following
Pn(x) =

1

2n

E(n/2)∑
k=0

(−1)k(
n

k)(
2n−2k
n)xn−2

k

P ′n(x) =
1

2n

E(n/2)∑
k=0

(−1)k(
n

k)(
2n−2k
n)(n− 2k)xn−2k−1

(5)

Now, let us go back to the electrostatic problem, but considering only two charges:
1

x1 + 1
+

1

x1 − 1
+

1

x1 − x2
= 0

1

x2 + 1
+

1

x2 − 1
+

1

x1 − x2
= 0

⇒ 2x1
x21 − 1

+
2x2
x22 − 1

= 0 (6)

By reducing, the following equation pops out: (x1+x2)(x1x2− 1) = 0, however |x1| < 1 and |x2| < 1,
therefore x1x2 6= 1, hence x1 = −x2. After reinjecting this solution into the �rst or second equation of
the system, the following equation is obtained: 5x21 − 3 = 0. Thanks to a Legendre polynomial table,
it is now easy to notice that the previous equation found is also the equation P ′3(x1) = 0. This leads
us to think that the electrostatic system with N charges has solutions which are exactly the roots
of the N + 1th Legendre polynomial derivative. Nevertheless, the mathematical demonstration when
the number of charges is more than 2 is more complex. It is indeed necessary to solve N non-linear
equations.

This intuition has already been validated, indeed when the �gure 10 has been drawn, to recall
the forward error is de�ned as δf = |||Xn − X|| where Xn is the solution vector that the algorithm
calculates and X is the known solution vector. To plot the �gure 10, the X vector has been computed
using the theoretical method just presented, meaning Legendre's polynomials. Thus this supports the
veracity of the theory.

Figure 12: Energy as a function of the distance (in
percentage) between the calculated solution and
the real solution (found thanks to Legendre)

The Newton Raphson method, allows us to
conclude that the solutions of the following sys-
tem ∇E(x1, x2, ..., xN) = 0 are a set of N -
permutations of the roots of the N + 1th Legen-
dre polynomial derivative. At last, it is possible
to plot the energy's system evolution when the N -
vector of charges reaches for an extremum. This
is plotted on the �gure 12. It is easily visible that
the energy is at a maximum.

In summary, the application of non-linear system resolution to electrostatic equilibrium has been
performed and is conclusive. Then, the highlighting with the Legendre polynomial has been carried
out which allowed to verify with more precision the quality and accuracy of the algorithms.

4 Analysis and conclusion

As a general conclusion, this project allowed us to introduce us to the resolution of non-linear equations
throughout the Newton-Raphson method. First of all, a generic method was discovered and then one

Team 8630 Numerical Algorithmic

Non-linear systems of equations / Newton-Raphson method 7

of its slowdown has been highlighted. This has led to an improvement in the method: Newton
Raphson with backtracking. Once these two methods were mastered, the backtracking method was
reused to perform two applications of the resolution of a non-linear system. First, a spatial problem:
the Lagrange points have been found using the algorithms set up. Then, a more theoretical problem
implying an electrostatic equilibrium during which, satisfatory and consistent results have been found.
Newton-Raphson's method implemented is consistent (backtracking calculating the solution faster,
linear then quadratic convergence speed, divergence cases etc). Nevertheless, several di�culties were
raised during the transition to the n dimension, but they were solved.

Team 8630 Numerical Algorithmic

	Implementation of the Newton Raphson method
	Implementation of the generic method
	Theoretical elements of the Newton-Raphson method
	Test set-up for the generic method

	Implementation of the method with backtracking
	Theoretical elements of the backtracking method
	Tests and comparison of the two methods
	Limitations of the Method

	Computation of the Lagrangia points
	Theoretical elements and Lagrange point equations
	Solving the equation system by the Newton-Raphson method

	Electrostatic equilibrium
	Computing the Jacobian matrix of the vector function
	Solving the equation system with the Newton-Raphson method
	Introduction to the Legendre polynomials

	Analysis and conclusion

