Cryptologie

IF202 2020-2021 Corentin Travers

Administration

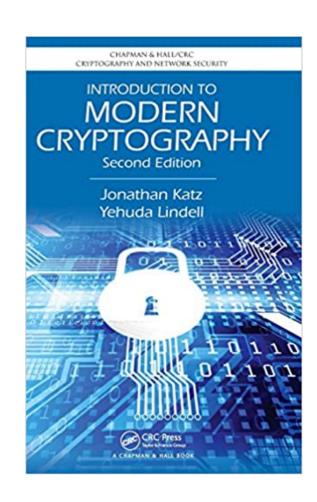
Organisation

- Page du cours : moodle Info/2ième année/IF202
- CM en télé-enseignement, TDs a priori en présentiel (machine1/machine2/sans machine/à distance le vendredi)
- Chargés de TDs: Pierre Ramet <u>pierre.ramet@labri.fr</u>
 Gwénolé Lucas <u>gwenole.lucas@inria.fr</u>
 Corentin Travers <u>ctravers@enseirb.fr</u>
- évaluation: Contrôle continu DMs + TP noté (selon condition sanitaire)

Intro

Références

- J. Katz, Y. Lindell *Introduction to modern cryptography*
- D. Boneh, V. Shoup A Graduate Course in Applied Cryptography https://toc.cryptobook.us/book.pdf
- V. Shoup A Computational Introduction to Number Theory and Algebra https://www.shoup.net/ntb/ ntb-v2.pdf



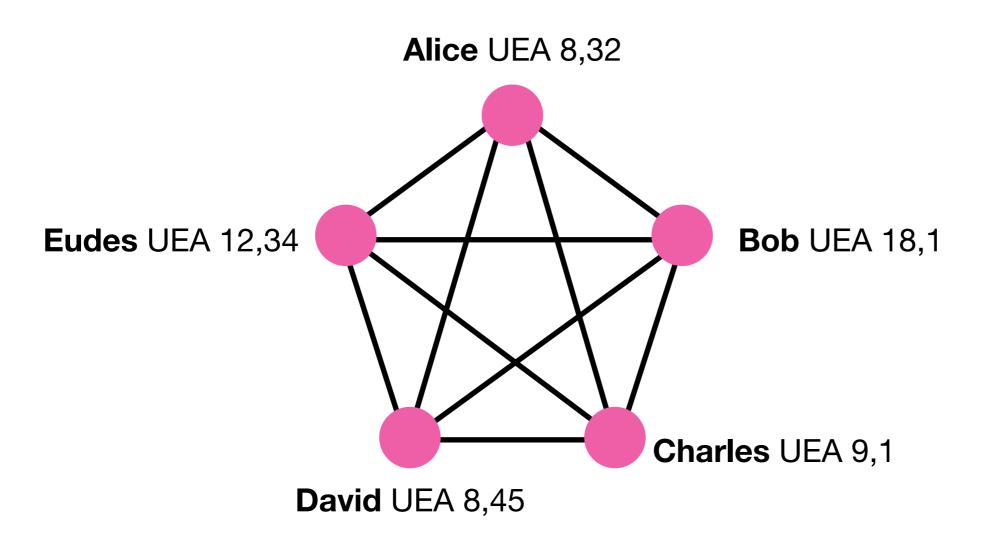
Objectifs

- Fondations pour la cybersécurité
- « Briques de base » pour la construction de systèmes sûrs
- Notion de sécurité
- Quelques applications modernes : blockchain, calcul réparti sûr, calcul réparti préservant la vie privée, etc.

Communication sûre

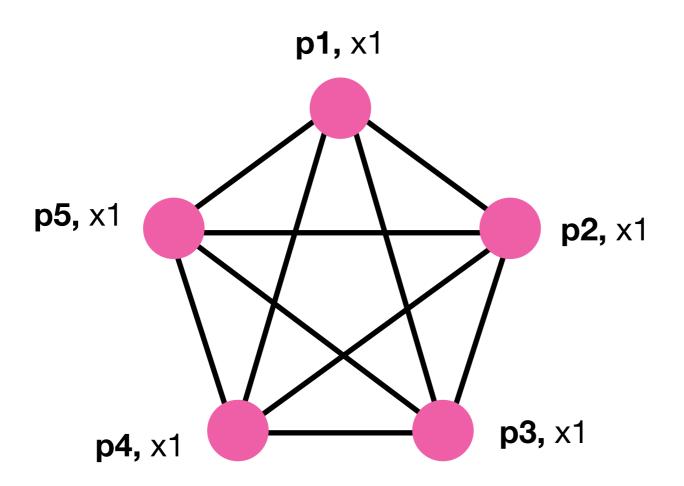
	Général Médias	Permissions Sécurit	té	
Identité du sit	o woh			
Site web :				
Propriétaire :	-	site web ne fournit pas d'informations sur son propriétaire.		
Proprietaire.	de site web he fournit pas a informations sur son proprietaire.			
Vérifiée par :	DigiCert Inc		Afficher le certificat	
Expire le :	10 novembre 2021			
Vie privée et h	nistorique			
Ai-je déjà visité ce site web auparavant ?		Non		
Ce site web conserve-t-il des informations sur mon ordinateur ?		Non Effacer les	cookies et les données de site	
Ai-je un mot de	e passe enregistré pour ce site web ?	Non Voir le	es mots de passe enregistrés	
Détails techni	ques			
Connexion chif	frée (clés TLS_AES_256_GCM_SHA384	, 256 bits, TLS 1.3)		
La page actuel	lement affichée a été chiffrée avant d'a	oir été envoyée sur Interr	net.	
	rend très difficile aux personnes non au ırs. Il est donc très improbable que que		. •	
			2	

Calcul réparti sûr



A,B,C,D,E souhaitent connaître combien parmi eux sont au rattrapage sans révéler leurs notes

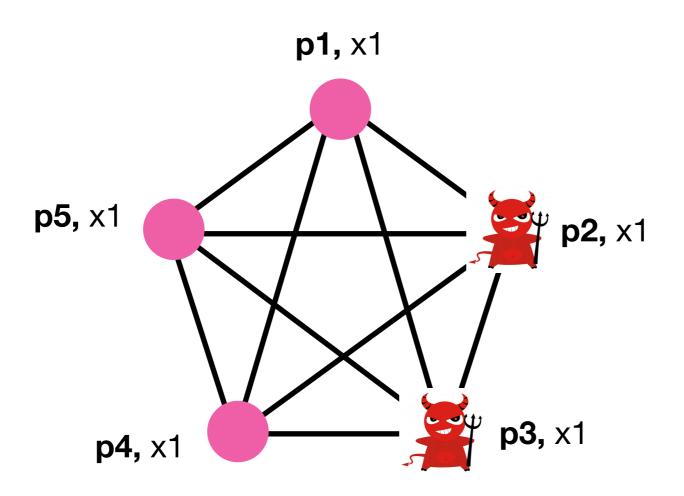
Calcul réparti sûr



calculer f(x1,...,xn)

A l'issue du protocole : pi connaît f(x1,...,xn) mais ne connaît pas xj, j != i

Calcul réparti sûr



calculer f(x1,...,xn)

A l'issue du protocole : pi connaît f(x1,...,xn) mais ne connaît pas xj, j != i

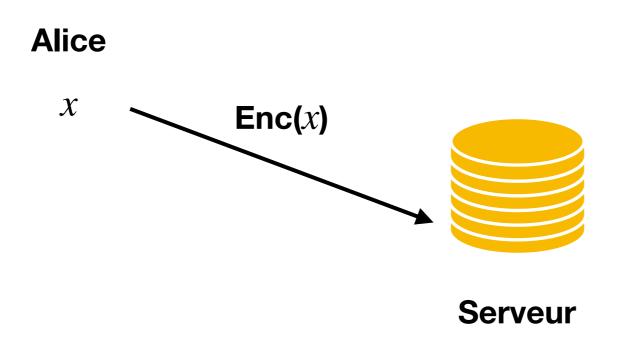
Chiffrement homomorphe

Alice

 \mathcal{X}

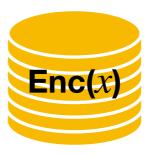
Serveur

Chiffrement homomorphe



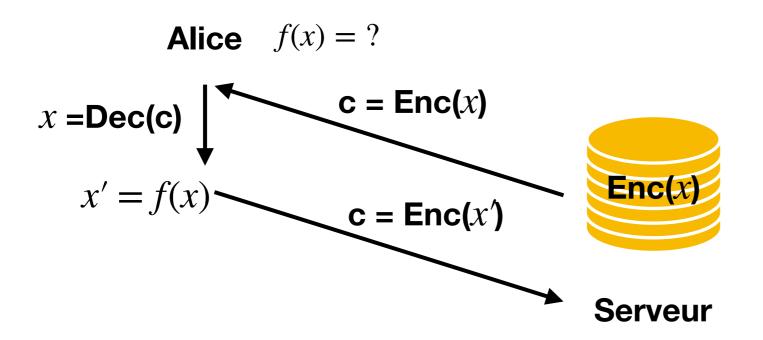
Chiffrement homomorphe

Alice f(x) = ?



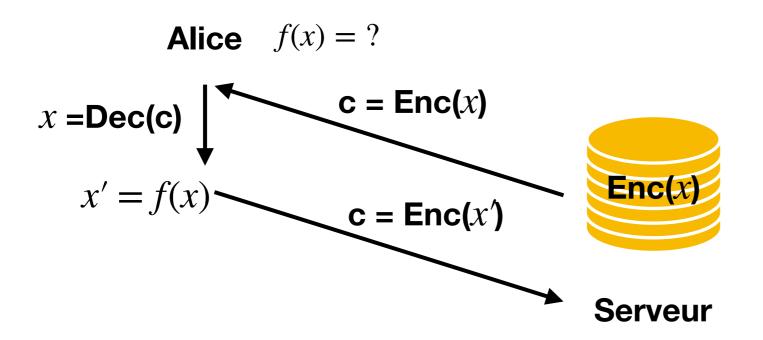
Serveur

Chiffrement classique: modification



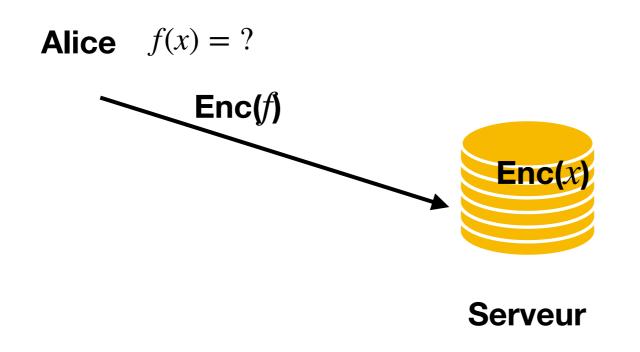
- Serveur stocke les données chiffrées d'Alice
- Modification de x : récupérer la version chiffrée, déchiffrer, modifier, chiffrer à nouveau et transmettre au serveur

Chiffrement classique: modification

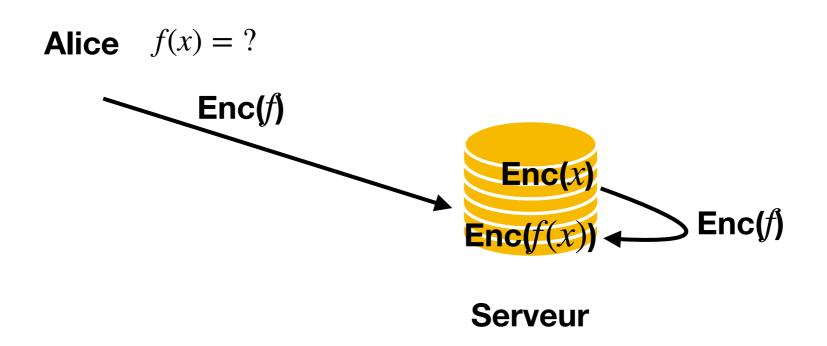


- Serveur stocke les données chiffrées d'Alice
- Modification de x : récupérer la version chiffrée, déchiffrer, modifier, chiffrer à nouveau et transmettre au serveur

Chiffrement homomorphe: modification

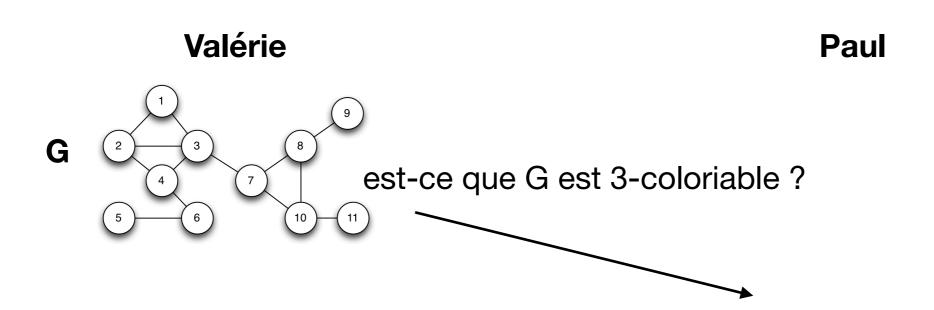


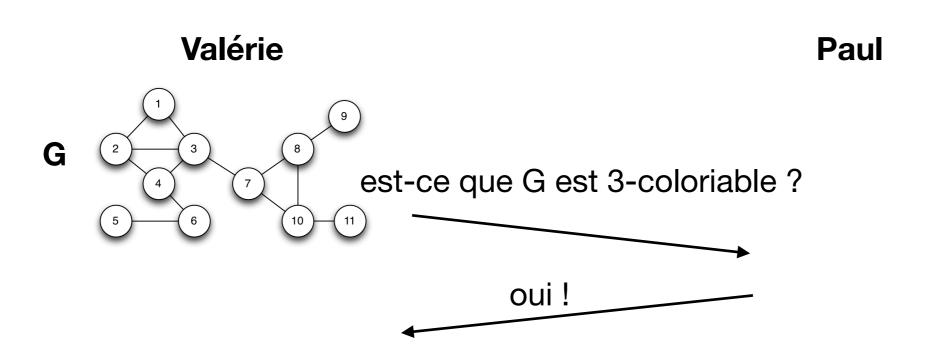
Chiffrement homomorphe: modification

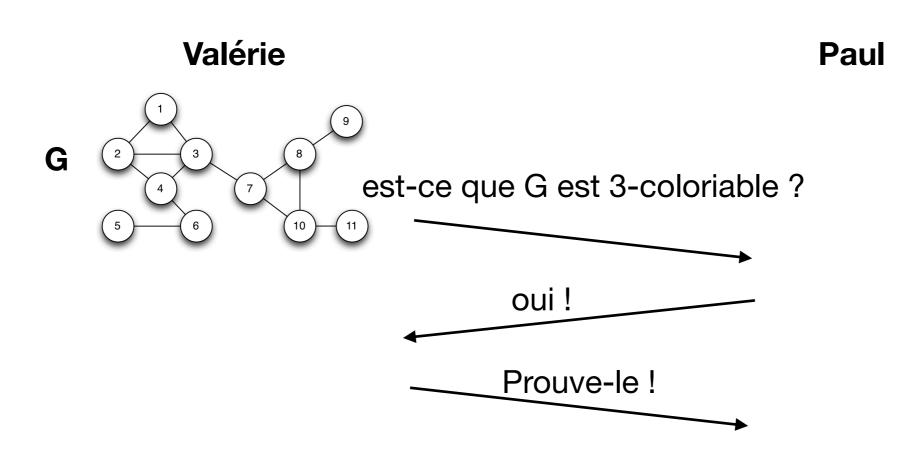


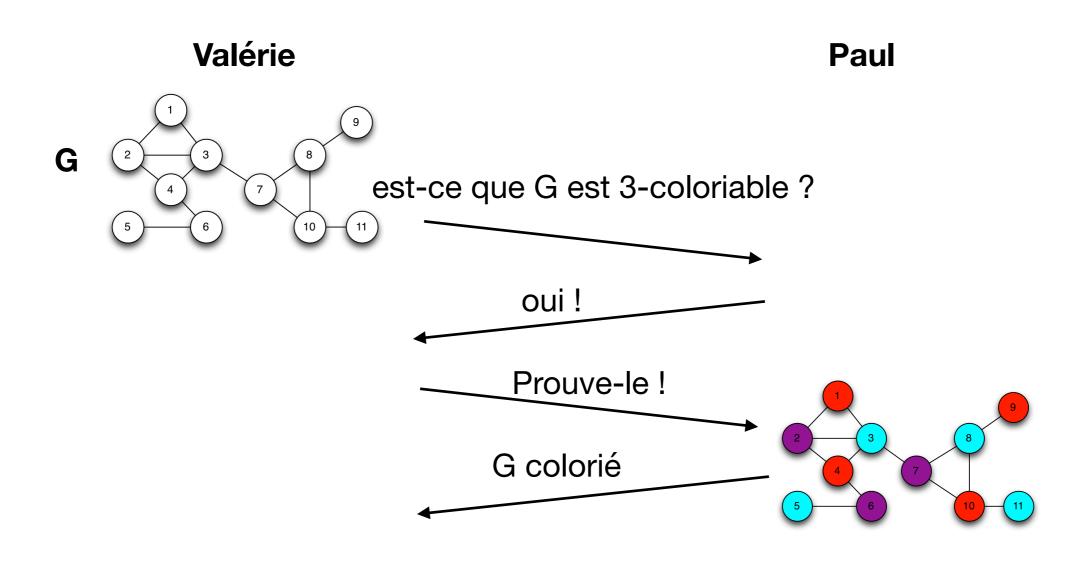
Le serveur ne peut pas connaître

- *x*
- f(x)
- $ni m \hat{e} m e f$

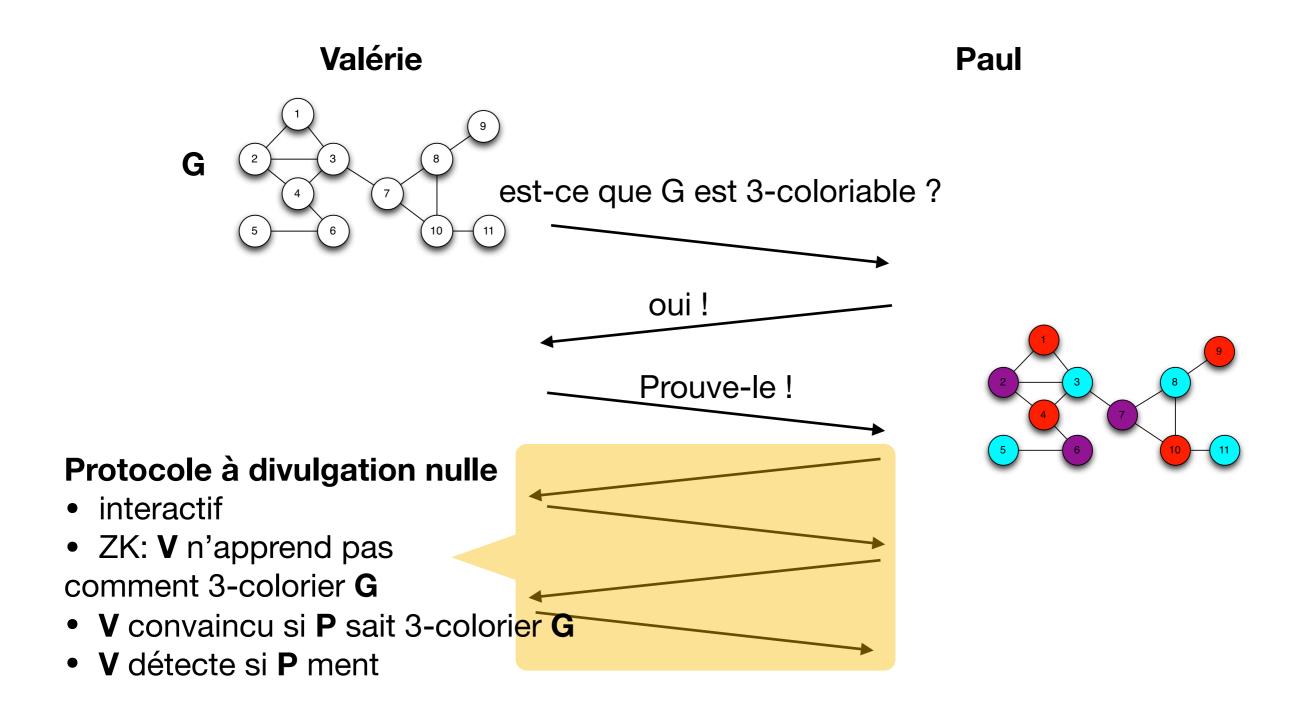






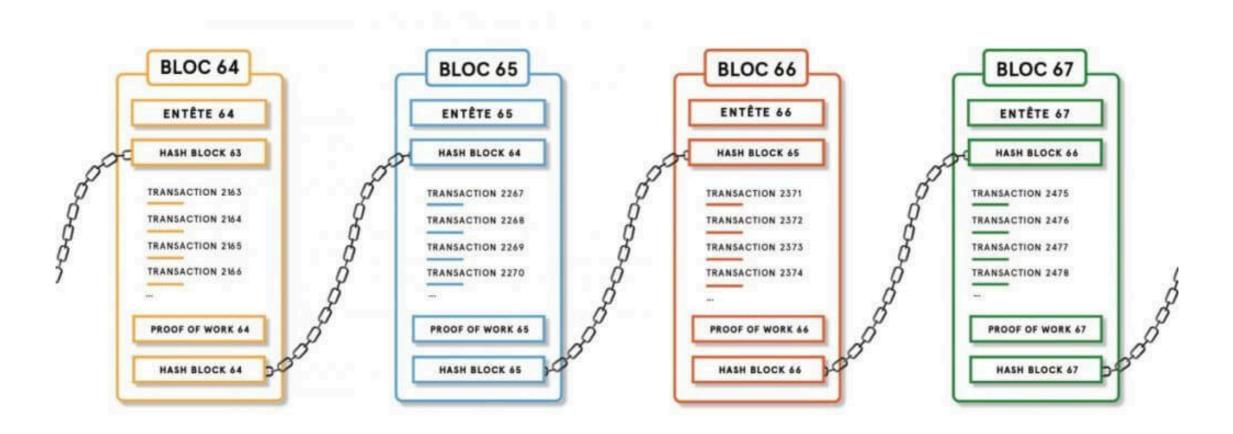


Zero Knowledge Proof



Blockchain

REGISTRE BLOCKCHAIN

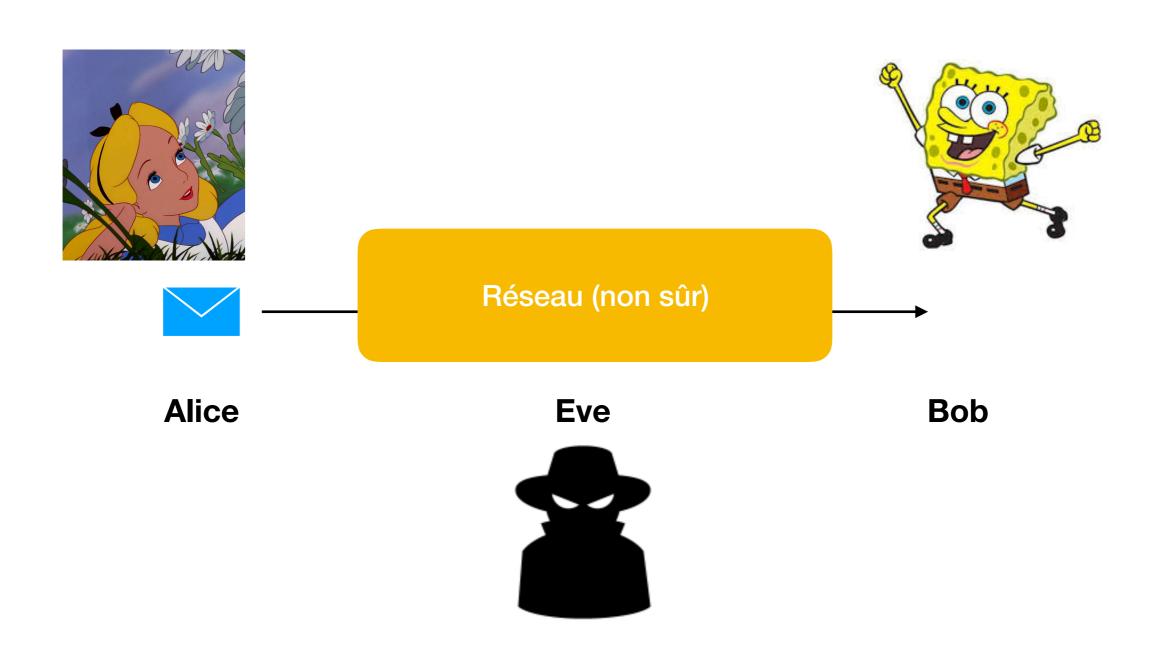


Registre « append-only » réparti

- hash cryptographique
- clés publiques
- signatures

Chiffrement à clé privée

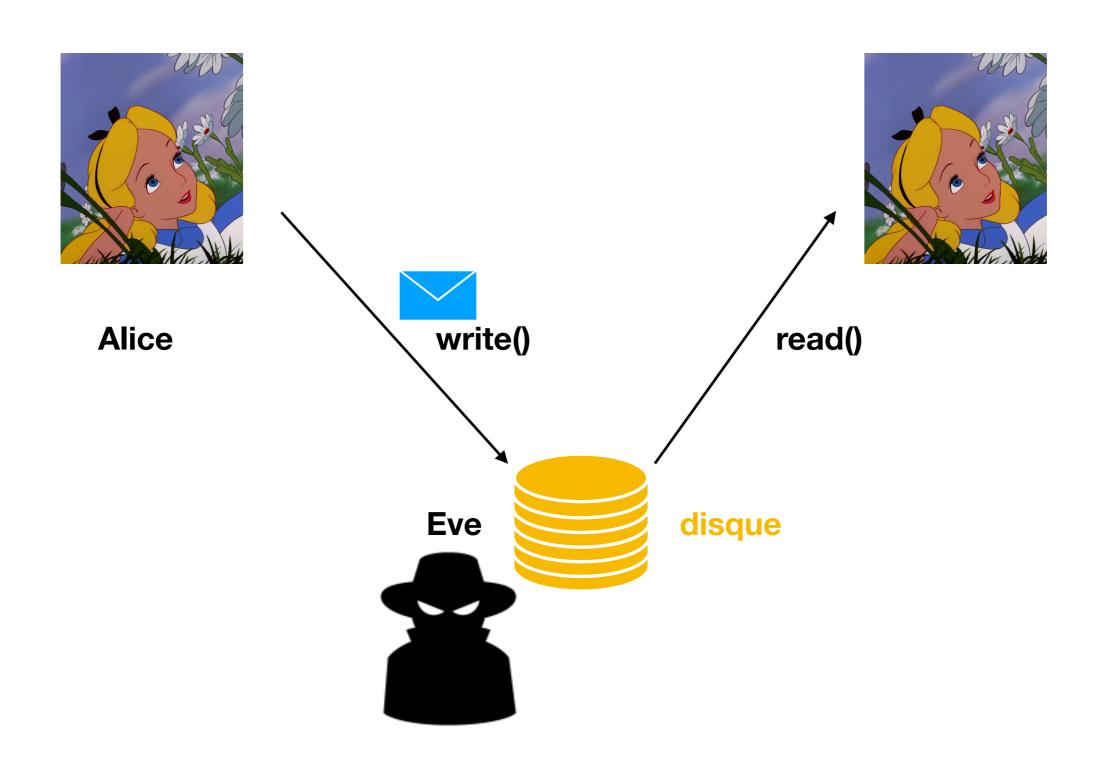
Communication sûre



Communication sûre?

- Confidentialité : Eve ne peut pas connaître m
- Intégrité : message reçu par Bob = m
- Authenticité: message reçu par Bob provient bien d'Alice

Communication sûre



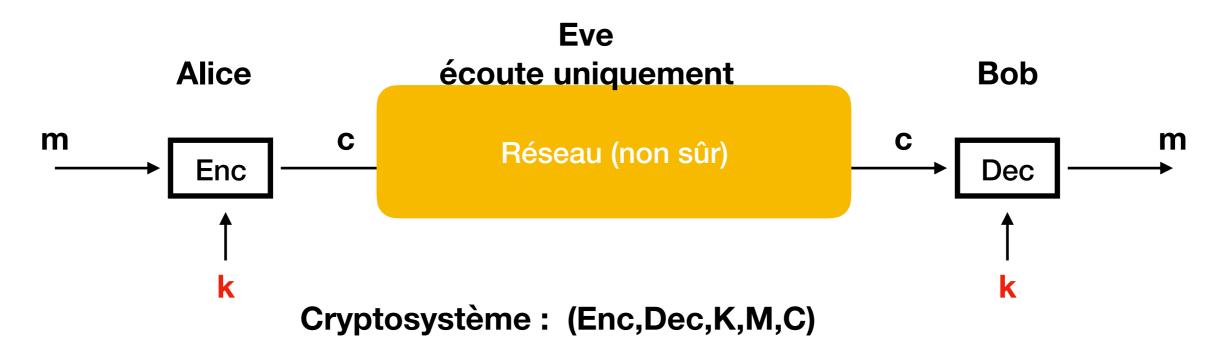
Confidentialité

- Clé privée : Alice et Bob partagent un secret
- Clé publique : Pas de secret partagé
- Un seul message/plusieurs messages
- Définitions : sécurité parfaite, sécurité sémantique/ calculatoire
- « Pouvoir » de l'Espion : écoute, modification des messages

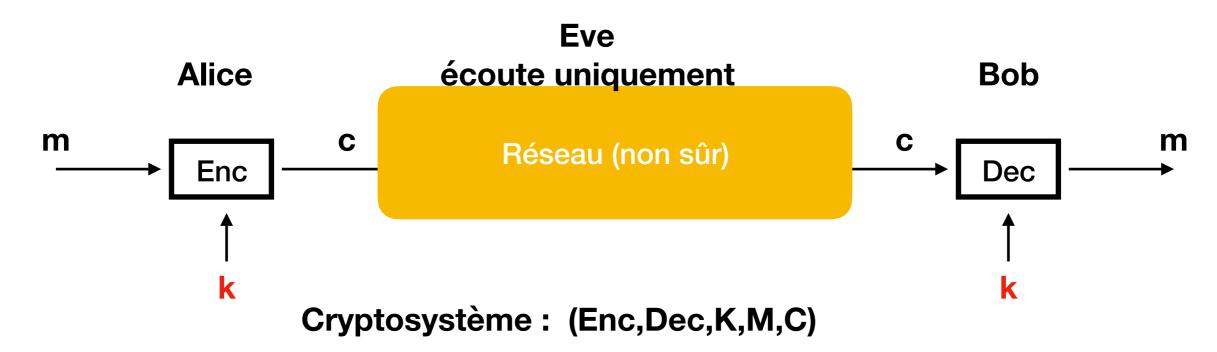


- Enc, Dec : algorithmes de chiffrement/déchiffrement
- k: clé secret partagé par Alice et Bob
- m : message en clair
- c: message chiffré

- Enc, Dec : algorithmes de chiffrement/déchiffrement
- k: clé secret partagé par Alice et Bob
- m : message en clair
- c: message chiffré
- c': message c après modification éventuelle par Eve



- Enc: K x M -> C chiffrement peut-être probabiliste
- Dec: K x C -> M déchiffrement
- K espace des clés
- M espace des messages en clair
- C espace des messages chiffrés



- Enc: K x M -> C chiffrement peut-être probabiliste
- Dec: K x C -> M déchiffrement
- K espace des clés
- M espace des messages en clair
- C espace des messages chiffrés

Validité $\forall m \in M, \forall k \in K : Dec(k, Enc(k, m)) = m$

Quelques exemples historiques (non sûrs)

Notations

- A = {'a',...,'z'} parfois identifié avec {0,1,...,25}
- $M = C = A^{\ell}$ où ℓ' est un entier

César

Chiffrement : remplacer chaque lettre du message en clair par la lettre à distance 3

cesar FHVDU

César

Chiffrement : remplacer chaque lettre du message en clair par la lettre à distance 3

Enc $(m_1 m_2 ... m_\ell) = C_1 C_2 ... C_\ell$ avec $C_i = (m_i + 3) \mod 26$

Aisément cassé : K = {3}!

Décalage

clé : entier $d \in \{0,...,25\}$

Chiffrement : remplacer chaque lettre du message en clair par la lettre à distance \boldsymbol{d}

Enc
$$(d, m_1 m_2 ... m_\ell) = C_1 C_2 ... C_\ell$$
 avec $C_i = (m_i + d) \mod 26$

Sûr ? |K| = 26

Attaque « brute-force » : Essayer toutes les clés possibles

Substitution

```
clé: permutation p: \{0,...,25\} \rightarrow \{0,...,25\}
```

Chiffrement : remplacer chaque lettre x du message en clair par la lettre p(x)

m bonjour

c NMLBMUR

Enc(
$$p, m_1 m_2 ... m_\ell$$
) = $C_1 C_2 ... C_\ell$ avec $C_i = p(m_i)$

Sûr ?
$$|K| = 26!$$

Substitution

clé: permutation $p: \{0,...,25\} \rightarrow \{0,...,25\}$

Chiffrement : remplacer chaque lettre x du message en clair par la lettre p(x)

Attaque recherche exhaustive : essayer toutes les clés possibles ?

$$|K| = 26! \simeq 4.10^{26}$$

tester 10^6 clés/sec

temps pour trouver la clé ? $\simeq 1,28.10^{13}$ ans 1 machine

 $\simeq 1.28.10^9$ ans 10 000 machines

Attaque par analyse fréquentielle

répartition (en %) des lettres en français/anglais

	Α	В	С	D	E	F	G	Н	I	J	K	L	М	N	О	Р	Q	R	S	Т	U
Français	9,42	1,02	2,64	3,39	15,87	0,95	1,04	0,77	8,41	0,89	0,00	5,34	3,24	7,15	5,14	2,86	1,06	6,46	7,90	7,26	6,24
Anglais	8,08	1,67	3,18	3,99	12,56	2,17	1,80	5,27	7,24	0,14	0,63	4,04	2,60	7,38	7,47	1,91	0,09	6,42	6,59	9,15	2,79

	V	W	X	Υ	Z
Français	2,15	0,00	0,30	0,24	0,32
Anglais	1,00	1,89	0,21	1,65	0,07

SEGELAZEWAOPQJLNKFAPZAJYUYHKLAZEACNWPQEPAAYNEPAYKKLANWPERAIAJP

Lettres	А	В	С	D	Е	F	G	Н	I	J	K	L	М	N	0	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	Total
Occurrences	12	0	1	0	7	1	1	1	1	3	4	4	0	4	1	7	2	1	1	0	1	0	3	0	4	3	62
Fréquences	19,4	0	1,6	0	11,3	1,6	1,6	1,6	1,6	4,8	6,5	6,5	0	6,5	1,6	11,3	3,2	1,6	1,6	0	1,6	0	4,8	0	6,5	4,8	100

p(e) = A, p(i) = E ou P, p(a) = E ou P, etc.

source: Wikipedia

Substitution

- Chiffrement par substitution mono-alphabétique :
 - Espace des clés très grand : attaque brute-force irréalisable
 - une lettre est toujours chiffrée de la même façon
 - Mais : caractéristique du clair (répartition des fréquences) conservée dans le chiffré -> Attaque facile

Substitution poly-alphabétique

- Chiffrement d'une lettre dépend
 - de la lettre
 - et de sa position dans le clair

Vigenère

Clé = enseirb

$$\mathbf{K} = \{k \in A^n\}$$

Enc(
$$k, m_0...m_{\ell}$$
) = $C_0...C_{\ell}$ avec $C_i = m_i + k_{i \mod n} \mod 26$

$$Dec(k, C_0...C_{\ell}) = m_0...m_{\ell} \text{ avec } m_i = C_i - k_{i \mod n} \mod 26$$

Vigenère (XVIème)

Clé = enseirb

$$\mathbf{K} = \{k \in A^{\ell}\}$$

Enc(
$$k, m_0 \dots m_\ell$$
) = $C_0 \dots C_\ell$ avec $C_i = m_i + k_{i \mod \ell} \mod 26$

$$\mathbf{Dec}(k, C_0 \dots C_\ell) = m_0 \dots m_\ell \text{ avec } m_i = C_i - k_{i \mod \ell} \mod 26$$

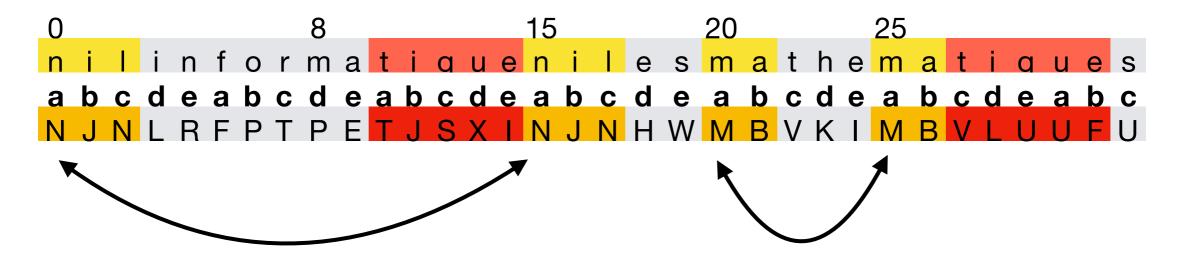
Vigenère: Attaque

Vigenère: Attaque

- Taille n de la clé connue : Analyse fréquentielle
- n inconnu?

Vigenère: Attaque

- Taille n de la clé connue : Analyse fréquentielle lettres $m_i, m_{i+n}, m_{i+2n}, \ldots$ chiffrées par le même décalage
- n inconnu?



distance entre sous-mots identiques =? multiple de *n* attaque de Kasiski/Babbage (XIXème)

Cryptosystèmes historiques

- Décalage, substitution mono/poly-alphabétique
- Attaques faciles : brute-force, ou fondées sur le fait que le chiffré conserver des caractéristiques du clair
- Attaque à texte chiffré seul

Typologie des attaques

- c : message à déchiffrer par l'attaquant
- 1. **Texte chiffré seul** (*ciphertext-only attack*) Attaquant connaît uniquement des messages chiffrés c1,...,cx
- 2.**Texte clair connu** (*known-plaintext attack*) Attaquant connaît (m1,c1), ..., (mx,cx) mi = Enc(k,ci), ci != **c**
- 3. **Texte clair choisi** (*chosen-plaintext attack*) Attaquant connaît (m1,c1), ..., (mx,cx) mi = Enc(k,ci) **choisi** par l'attaquant
- 4. **Texte chiffré choisi** (*chosen-ciphertext attack*) Attaquant connaît (m1,c1), ..., (mx,cx), ci = Dec(k,mi) **choisi** par l'attaquant ci !=**c**

En pratique, on souhaite résister aux attaques de type 3. voire 4.

Qu'est ce qu'un cryptosytème sûr ?

Qu'est ce qu'un cryptosytème sûr ?

- Commet définir le définir ?
- Attaque 1. : texte chiffré seul
- étant donné **c** = Enc(k,m), l'attaquant ne peut pas ...
- 1.trouver la clé m?
- 2.trouver m?
- 3.trouver les 3premières lettres de m?
- 4.???

Qu'est ce qu'un cryptosytème sûr ?

- Commet définir le définir ?
- Attaque 1. : texte chiffré seul
- étant donné **c** = Enc(k,m), l'attaquant ne peut pas ...
- 1.trouver la clé m?
- 2.trouver m?
- 3.trouver les 3premières lettres de m?
- 4.calculer n'importe quel prédicat non-trivial sur m?

Chiffrement de Vernam (1917) masque jetable

Rappel ⊕ (XOR)

ou exclusif

$$x \oplus y = y \oplus x$$
$$(x \oplus y) \oplus z = x \oplus (y \oplus z)$$
$$x \oplus x = 0...0 \qquad x \oplus 0...0 = x$$

Masque jetable

$$M = C = K = \{0,1\}^n$$

 $\operatorname{Enc}(k, m) = c \text{ avec } c_i = k_i \oplus m_i$
 $\operatorname{Dec}(k, c) = m \text{ avec } m_i = k_i \oplus c_i$

Exemple

Validité

 $Dec(k, Enc(k, m)) = k \oplus (k \oplus m) = (k \oplus k) \oplus m = 0^n \oplus m = m$

Sécurité inconditionnelle

Attaquant **Eve**

- connaît c chiffré
- sait que le message clair $\mathbf{m} \in \{m_0, m_1\}$ avec $m_0 =$ « attaque at dawn » $m_1 =$ « attaque at dusk »
- sait que $Pr[\mathbf{m} = m_0] = Pr[\mathbf{m} = m_1] = 1/2$

Sécurité inconditionnelle : la connaissance de **c** *n'apporte* aucune information sur **m**

Exemple

- S'il existe k_0, k_1 telles que $\mathrm{Enc}(k_0, m_0) = c = \mathrm{Enc}(k_1, m_1)$, la connaissance de \mathbf{c} ne permet d'être certain que $\mathbf{m} = m_0$ ou $\mathbf{m} = m_1$
- Supposons qu'il existe
 - 800 clés k_0 telles que $\operatorname{Enc}(k_0, m_0) = c$
 - 600 clés k_1 telles que $\operatorname{Enc}(k_1, m_1) = c$
- **Eve** devine que $\mathbf{m} = m_0$
 - . Proba. qu'elle devine correctement = $\frac{800}{800+600} \simeq 0,57 > 1/2$
 - Proba. de deviner correctement sans connaître $\mathbf{c} = 1/2$
 - Proba. de deviner correctement en connaissant c = 0,57
 - Non inconditionnellement sûr

Sécurité inconditionnelle Définition

Soit $\mathbf{A} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème

 ${\bf k}$ variable aléatoire correspondant au tirage aléatoire uniforme d'une clé dans K

pour $m \in M$, Enc(\mathbf{k} ,m) variable aléatoire correspondant à l'application de la fonction de chiffrement à la v.a. \mathbf{k} pour le message m

Sécurité inconditionnelle Définition

Soit $\mathbf{A} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème

 ${\bf k}$ variable aléatoire correspondant au tirage aléatoire uniforme d'une clé dans K

pour $m \in M$, Enc(\mathbf{k} ,m) variable aléatoire correspondant à l'application de la fonction de chiffrement à la v.a. \mathbf{k} pour le message m

Définition

A est inconditionnellement sûr ssi

 $\forall m_0 \neq m_1 \in M \text{ et } \forall c \in C$, on a

 $\Pr[\operatorname{Enc}(\mathbf{k}, m_0) = c] = \Pr[\operatorname{Enc}(\mathbf{k}, m_1) = c]$

Vernam est inconditionnellement sûr

Vernam

$$M = C = K = \{0,1\}^n$$

$$\text{Enc}(k, m) = c \text{ avec } c_i = k_i \oplus m_i$$

$$\text{Dec}(k, c) = m \text{ avec } m_i = k_i \oplus c_i$$

Vernam est inconditionnellement sûr

Vernam/Masque jetable

$$M = C = K = \{0,1\}^n$$

 $\operatorname{Enc}(k, m) = c \text{ avec } c_i = k_i \oplus m_i$
 $\operatorname{Dec}(k, c) = m \text{ avec } m_i = k_i \oplus c_i$

Soit
$$m_0 \neq m_1 \in M$$
 et $c \in C$
$$\Pr[\operatorname{Enc}(\mathbf{k}, m_i) = c] = \Pr[\mathbf{k} \oplus m_i = c] \qquad i \in \{0, 1\}$$
$$= \Pr[\mathbf{k} = c \oplus m_i]$$
$$= \frac{1}{2^n}$$

Sécurité inconditionnelle définition alternative

Soit $\mathbf{A} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème

k variable aléatoire distribution uniforme sur K

 ${\bf m}$ variable aléatoire distribuée sur M

k et m sont indépendantes

c variable aléatoire Enc(k,m)

Théorème

- Si **A** est inconditionnellement sûr alors **c** et **m** sont indépendantes (i.e., $\Pr[\mathbf{c} = c \mid \mathbf{m} = m] = \Pr[\mathbf{c} = c]$)
- Si ${\bf c}$ et ${\bf m}$ sont indépendantes et $\forall m \in M, \Pr[{\bf m}=m]>0$ alors ${\bf A}$ est inconditionnellement sûr

Théorème

- Si **A** est inconditionnellement sûr alors **c** et **m** sont indépendantes (i.e., $\Pr[\mathbf{c} = c \mid \mathbf{m} = m] = \Pr[\mathbf{c} = c]$)
- Si **c** et **m** sont indépendantes et $\forall m \in M, \Pr[\mathbf{m} = m] > 0$ alors **A** est inconditionnellement sûr

Démo

Sécurité inconditionnelle Bad news

Théorème (Shannon)

Soit $\mathbf{A} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème.

Si ${\bf A}$ est inconditionnellement sûr alors |K|>|M|

Sécurité inconditionnelle Bad news

Théorème (Shannon)

Soit $\mathbf{A} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème.

Si **A** est inconditionnellement sûr alors |K| > |M|

Conséquence

- Alice veut envoyer 2Go de vidéo à Bob
- -> nécessite qu'ils s'accordent au préalable sur une clé de 2 Go
- Sécurité inconditionnelle quasi-impossible à mettre en oeuvre en pratique

Sécurité inconditionnelle Bad news

Théorème (Shannon)

```
Soit \mathbf{A} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C) un cryptosystème.
Si \mathbf{A} est inconditionnellement sûr alors |K| > |M|
```

Démonstration

```
Supp. |K| < |M|
Soit k_0 \in K, m_0 \in M et soit c = \operatorname{Enc}(k_0, m_0)
définissons M_c = \{m \in M : \exists k_1 \in K, \operatorname{Dec}(k_1, c) = m\}
autrement dit M_c = \{\operatorname{Dec}(k_1, c) : k_1 \in K\}
Puisque |K| < |M|, \ \exists m_1 \in M \backslash M_c
On a \Pr[\operatorname{Enc}(\mathbf{k}, m_0) = c] > 0 et \Pr[\operatorname{Enc}(\mathbf{k}, m_1) = c] = 0
```

A n'est donc pas inconditionnellement sûr

Sécurité inconditionnelle limites

- Adversaire : attaque à texte chiffré seul. Ne connaît qu'un seul message chiffré
- Nécessite des clés au moins aussi longues que les messages en clair: difficile à mettre en oeuvre en pratique
- Masque recyclable : Soit $c_1=m_1\oplus k, c_2=m_2\oplus k$ $c_1\oplus c_2=?$

Sécurité inconditionnelle limites

- Adversaire : attaque à texte chiffré seul. Ne connaît qu'un seul message chiffré
- Nécessite des clés au moins aussi longues que les messages en clair: difficile à mettre en oeuvre en pratique
- Masque recyclable : Soit $c_1=m_1\oplus k, c_2=m_2\oplus k$ $c_1\oplus c_2=(m_1\oplus k)\oplus (m_2\oplus k) = m_1\oplus m_2\oplus k\oplus k = m_1\oplus m_2$ Ne dépend pas de la clé k

Sécurité: version jeu

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème

Jeu à 2 joueurs : Adversaire et Challenger

Partie (ou Expérience) $b \in 0,1$

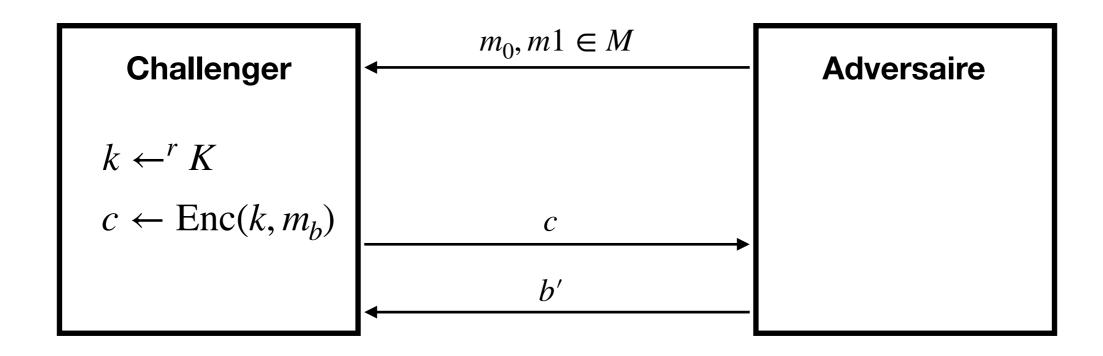
- A choisit $m_0, m_1 \in M$ avec $|m_0| = |m_1|$ et les envoie à C
- C tire une clé k aléatoire de façon uniforme et envoie $c = \operatorname{Enc}(k, m_b)$ à A
- **A** produit un bit b'

Adversaire gagne si b' = b

Sécurité: version jeu

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème

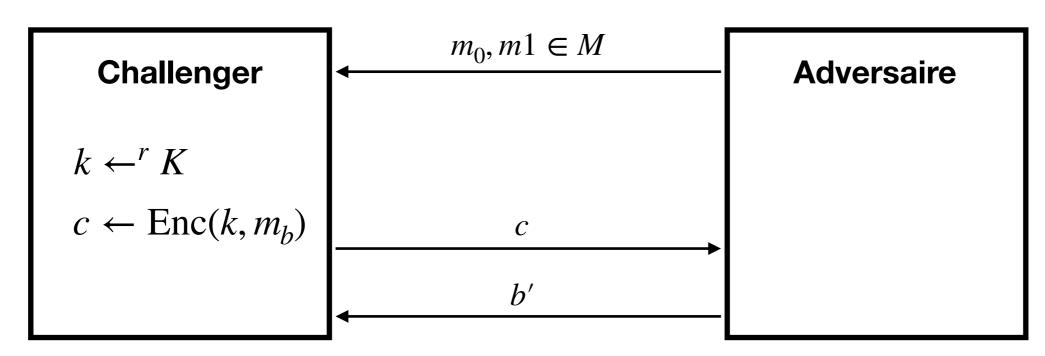
Jeu à 2 joueurs : Adversaire et Challenger



Sécurité: version jeu

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème

Jeu à 2 joueurs : Adversaire et Challenger

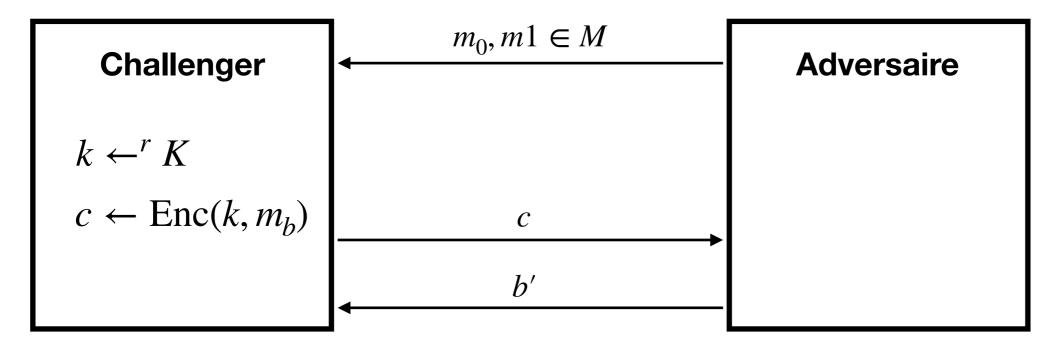


 W_b A produit b' = 1 dans l'expérience b

Avantage $Avtg(\mathbf{A}, \mathcal{E}) = |\Pr[W_1] - \Pr[W_0]|$

Sécurité inconditionnelle : version jeu

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème



 W_b A produit b'=1 dans l'expérience b

Avantage $Avtg(\mathbf{A}, \mathcal{E}) = |\Pr[W_1] - \Pr[W_0]|$

théorème

Si pour tout $\mathbf{A} Avtg(\mathbf{A}, \mathcal{E}) = 0$ alors \mathcal{E} inconditionnellement sûr

Sécurité inconditionnelle : version jeu

théorème

Si pour tout $\mathbf{A} Avtg(\mathbf{A}, \mathcal{E}) = 0$ alors \mathcal{E} inconditionnellement sûr

- Pas de limite sur les capacités et temps de calcul de A
- Avantage nul : pas de stratégie meilleure que produire b' au hasard

Sécurité inconditionnelle : version jeu

théorème

Si pour tout $\mathbf{A} Avtg(\mathbf{A}, \mathcal{E}) = 0$ alors \mathcal{E} inconditionnellement sûr

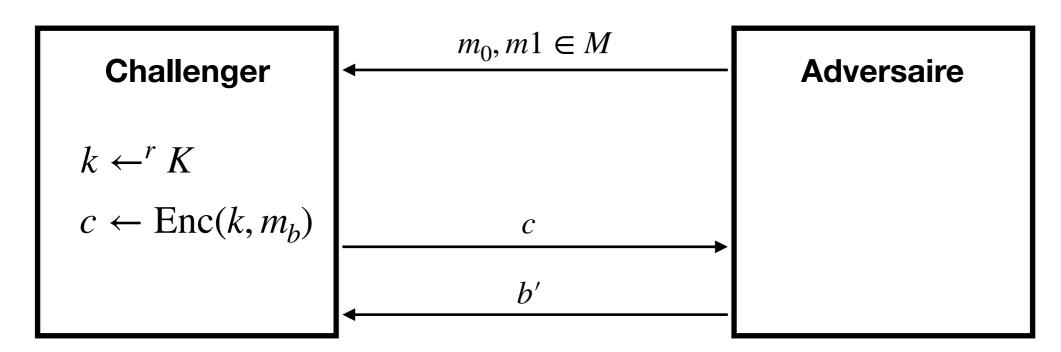
- Pas de limite sur les capacités et temps de calcul de A
- Avantage nul : pas de stratégie meilleure que produire b' au hasard

En pratique

- Ressources calculatrices bornées : A efficace
- Avantage <u>négligeable</u> : probabilité extrêmement faible que **A** gagne

Sécurité sémantique

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème



 W_b A produit b'=1 dans l'expérience b

Avantage
$$Avtg(\mathbf{A}, \mathcal{E}) = |\Pr[W_1] - \Pr[W_0]|$$

Définition

 ${\mathscr E}$ est ${\color{red} {\bf s\acute{e}mantiquement\ s\^{u}r}}$ ssi pour tout ${\bf A}$ efficace, $Avtg(\mathbf{A}, \mathscr{E}) = |\Pr[W_1] - \Pr[W_0]| \le \mathsf{negl}$.

Efficace/négligeable

- A efficace : calcul réaliste
 - 100 x 365 x 24 x 3600 x 10¹⁵ opérations *ok* (100 ans TOP10 supercomputer)
 - 10^80 x 13.10^9 x 365 x 24 x 3600 x 10^15 not ok (TOP10 supercomputer par atome dans l'univers pendant 13.10^9 an)
- p negligeable : probabilité si faible qu'elle peut être considérée nulle en pratique
 - 1/6 non-négligeable
 - 1/2118760 non-négligeable (prob. gain euro million)
 - 1/2^100 négligeable

Efficace/négligeable

- Un peu plus formellement :
- n : paramètre de sécurité (e.g., taille des clés)
- Efficace : complexité polynomiale temps/espace en $O(n^d)$
- $f: \mathbb{N} \to \mathbb{N}$ négligeable si $\forall c > 0$, $\lim_{n \to +\infty} f(n)n^c = 0$

Négligeable?

•
$$f: n \to \frac{1}{14590n^4 + n^6 \log n}$$

•
$$f: n \to \frac{1}{14590n^{100000}}$$

•
$$f: n \to \frac{1}{2^n}$$

$$f: n \to \frac{1}{2\sqrt{n}}$$

•
$$f: n \to \frac{1}{n^{\log n}}$$

Sécurité sémantique

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème

- Adversaire choisit m0, m1
- et est capable de distinguer avec proba. faible, mais nonnégligeable leur chiffrement en temps/espace raisonnable
- Alors & n'est pas sémantiquement sûr

Sécurité sémantique

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$ un cryptosystème

- Adversaire choisit m0, m1
- et est capable de distinguer avec proba. faible, mais nonnégligeable leur chiffrement en temps/espace raisonnable
- Alors & n'est pas sémantiquement sûr
- attaque à textes clairs choisis
- attaque probabiliste
- ce qu'exactement l'attaquant est capable de déterminer du clair n'est pas important
- attaquant dispose de ressources de calcul considérable (gouvernement/Google/etc. vs individu)

Chiffrement de flot

stream cipher

Masque jetable (Vernam) Rappel

Masque jetable

$$M = C = K = \{0,1\}^n$$

 $\operatorname{Enc}(k, m) = c \text{ avec } c_i = k_i \oplus m_i$
 $\operatorname{Dec}(k, c) = m \text{ avec } m_i = k_i \oplus c_i$

inconditionnellement sûr mais:

- clé k aussi longue le message
- clé choisie aléatoirement, de façon uniforme
- clé à usage unique

Chiffrement de flot

$$G: \{0,1\}^n \to \{0,1\}^N, n \ll N$$
 générateur pseudo aléatoire

$$M = C = \{0,1\}^{N}$$

$$K = \{0,n\}^{n}$$

$$\operatorname{Enc}(k, m) = G(k) \oplus m$$

$$\operatorname{Dec}(k, c) = G(k) \oplus c$$

↓ G

G(k)

 \oplus

m

Générateur pseudoaléatoire

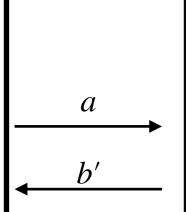
$$G: \{0,1\}^n \to \{0,1\}^N, n < N$$

- Il existe un algorithme efficace pour calculer ${\cal G}$
- Calculatoirement difficile de distinguer la sortie de G d'une source aléatoire

Expérience 0

Expérience 1

$$k \leftarrow \{0,1\}$$
$$a \leftarrow G(k)$$

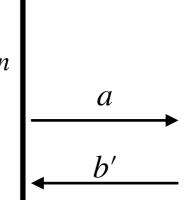


Adversaire

Challenger

$$a \leftarrow \{0,1\}$$

$$a \leftarrow G(k)$$



Adversaire

 W_b A produit b'=1 dans l'expérience b

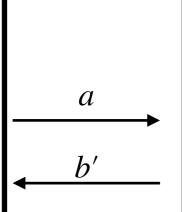
<u>Avantage</u>

$$Avtg(\mathbf{A}, G) = |\Pr[W_1] - \Pr[W_0]|$$

Expérience 0

Challenger

 $k \leftarrow^r \{0,1\}^n$ $a \leftarrow G(k)$



Adversaire

Expérience 1

Challenger

$$a \leftarrow^r \{0,1\}^N$$

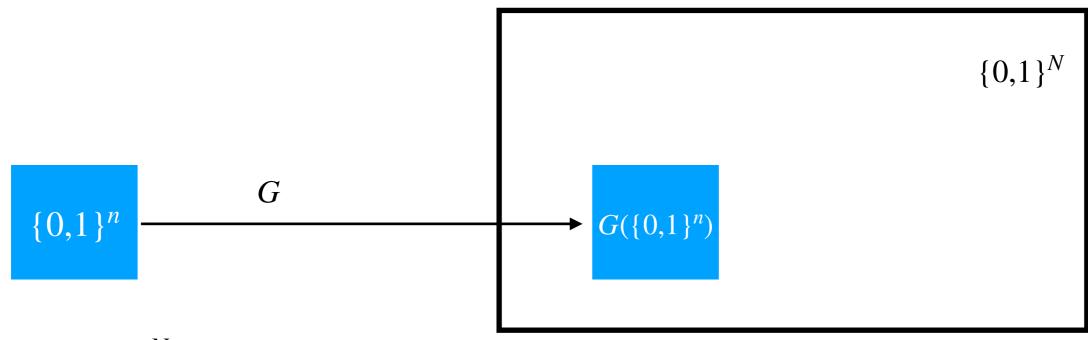
Adversaire

$$W_b$$
 A produit $b'=1$ dans l'expérience b

<u>Avantage</u>

$$Avtg(\mathbf{A}, G) = |\Pr[W_1] - \Pr[W_0]|$$

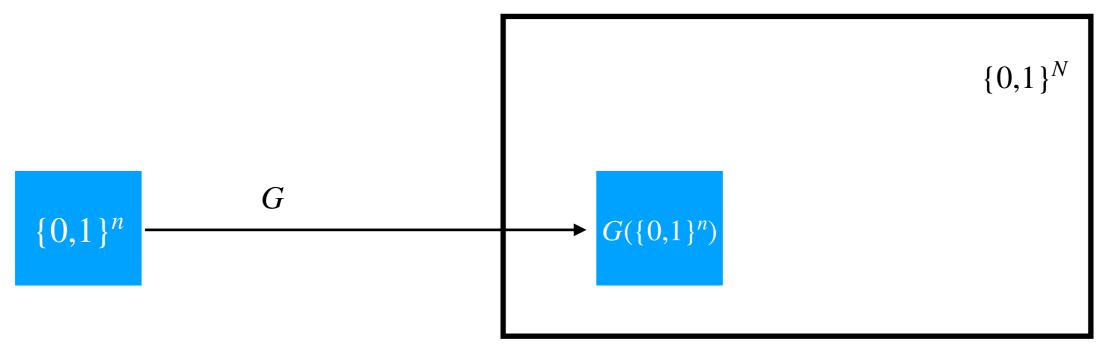
b'



adv $A(a \in \{0,1\}^N) : \{0,1\}$

if $\exists x : G(x) = a$ alors retourner 0 sinon retourner 1

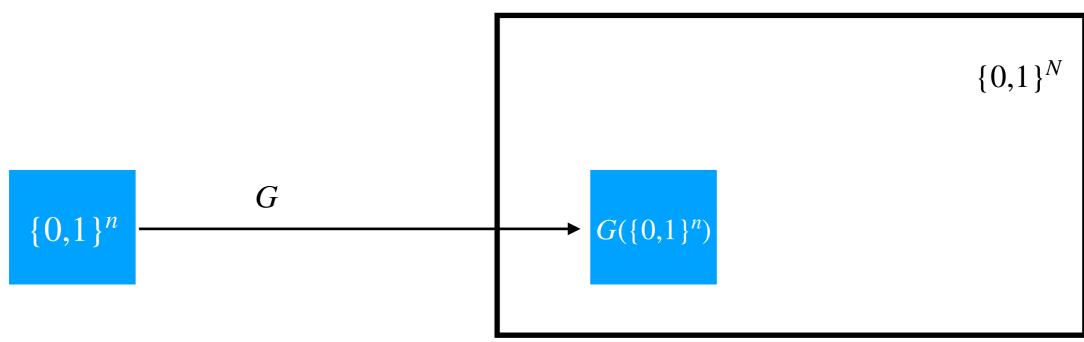
 $Avtg(\mathbf{A},G) = |\Pr[W_1] - \Pr[W_0]|$??? négligeable ? non-négligeable ?



adv $A(a \in \{0,1\}^N) : \{0,1\}$

if $\exists x : G(x) = a$ alors retourner 0 sinon retourner 1

Exp. 0 : a pseudo-aléatoire $Pr[W_0] = Pr[\mathbf{b}' = 1] = 0$



adv $A(a \in \{0,1\}^N) : \{0,1\}$

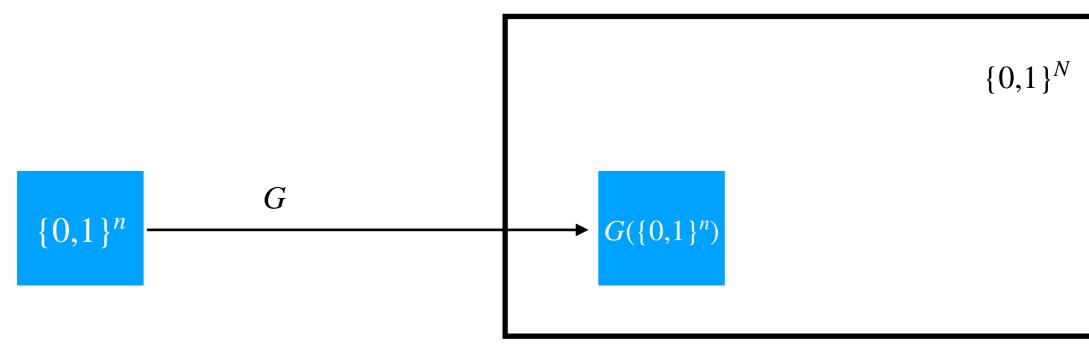
if $\exists x : G(x) = a$ alors retourner 0 sinon retourner 1

Exp. 0 : a pseudo-aléatoire

 $\Pr[W_0] = \Pr[\mathbf{b}' = 1] = 0$

Exp. 1: *a* aléatoire

 $\Pr[W_1] = \Pr[\mathbf{b}' = 1] = \Pr[a \notin G(\{0,1\}^n] = 1 - 2^n/2^N$



adv $A(a \in \{0,1\}^N) : \{0,1\}$

if $\exists x : G(x) = a$ alors retourner 0 sinon retourner 1

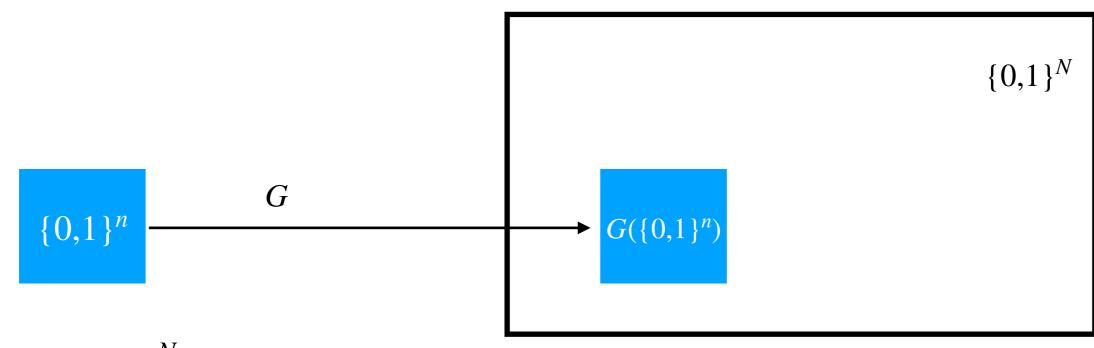
Exp. 0 : a pseudo-aléatoire

$$\Pr[W_0] = \Pr[\mathbf{b}' = 1] = 0$$

Exp. 1: *a* aléatoire

$$\Pr[W_1] = \Pr[\mathbf{b}' = 1] = \Pr[a \notin G(\{0,1\}^n] = 1 - 2^n/2^N]$$

$$Avtg(\mathbf{A}, G) = |\Pr[W_1] - \Pr[W_0]| = 1 - 2^n/2^N$$



adv $A(a \in \{0,1\}^N) : \{0,1\}$

if $\exists x : G(x) = a$ alors retourner 0 sinon retourner 1

 $O(2^n)$ non efficace

Exp. 0 : a pseudo-aléatoire

$$\Pr[W_0] = \Pr[\mathbf{b}' = 1] = 0$$

Exp. 1: *a* aléatoire

$$\Pr[W_1] = \Pr[\mathbf{b}' = 1] = \Pr[a \notin G(\{0,1\}^n] = 1 - 2^n/2^N$$

 $Avtg(\mathbf{A}, G) = |\Pr[W_1] - \Pr[W_0]| = 1 - 2^n/2^N$

non négligeable

Générateur sûr

$$G: \{0,1\}^n \to \{0,1\}^N, n < N$$

définition

G est sûr si pour tout adversaire A efficace $Avtge(\mathbf{A},G)=$ negl .

$$\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K, M, C)$$
 avec $\operatorname{Enc}(k, m) = G(k) \oplus m$ et $\operatorname{Dec}(k, c) = G(k) \oplus c$ théorème

Si G est sûr alors $\operatorname{\mathscr{E}}$ est sémantiquement sûr

Chiffrements de flot: limites

Soit
$$c_1 = G(k) \oplus m_1, c_2 = G(k) \oplus m_2$$

$$c_1 \oplus c_2 = (G(k) \oplus m_1) \oplus (G(k) \oplus m_2) = m_1 \oplus m_2$$

ne dépend pas de la clé!

ne pas réutiliser le flot de bits pseudo-aléatoire!

Chiffrements de flot: limites

Soit
$$c_1 = G(k) \oplus m_1, c_2 = G(k) \oplus m_2$$

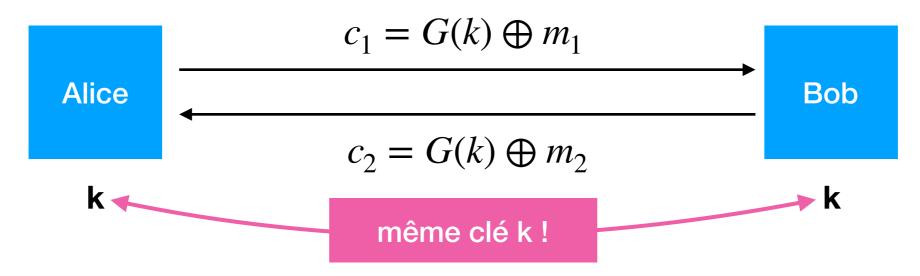
$$c_1 \oplus c_2 = (G(k) \oplus m_1) \oplus (G(k) \oplus m_2) = m_1 \oplus m_2$$

ne dépend pas de la clé!

ne pas réutiliser le flot de bits pseudo-aléatoire!

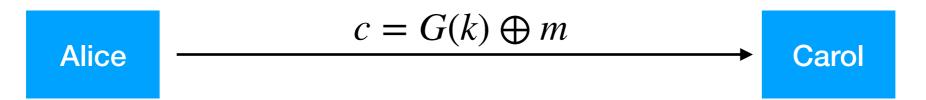
PPTP (point to point tunneling protocol)

implémentation dans windows NT



Chiffrements de flot: malléabilité

$$m = FROM:ALiCE_DM1_IF202...$$



Chiffrements de flot: malléabilité

$$m = FROM:ALiCE_DM1_IF202...$$

Alice

$$c = G(k) \oplus m$$

Carol

- sait que m démarre par FROM:ALICE
- calcule Δ tel que FROM:ALICE $\bigoplus \Delta = \text{FROM:DAVID}$

$$c = G(k) \oplus m$$

$$c' = c \oplus \Delta \cdot 00...$$

$$c' = c \oplus \Delta \cdot 00...$$

Chiffrements de flot: malléabilité

$$m = FROM:ALiCE_DM1_IF202...$$

Alice

$$c = G(k) \oplus m$$

Carol

- david sait que *m* commence par FROM:ALICE
 - calcule Δ tel que FROM:ALICE $\bigoplus \Delta = \text{FROM:DAVID}$

$$c = G(k) \oplus m$$

$$c' = c \oplus \Delta \cdot 00...$$

$$\begin{aligned} \operatorname{Dec}(k,c') &= G(k) \oplus c' \\ &= G(k) \oplus \Delta \cdot 00... \oplus c \\ &= m \oplus \Delta \cdot 00... \\ &= \operatorname{F} \operatorname{R} \operatorname{OM} : \operatorname{DAVID}_- \operatorname{DM1}_- \operatorname{IF202}... \end{aligned}$$

GLIBC random()

init(s): r[1..34]

```
r[0] \leftarrow s

pour i: 1 \le i \le 30

r[i] \leftarrow a \times r[i-1] \mod 2^{32} - 1

pour i: 31 \le i \le 33

r[i] \leftarrow r[i-31]

retourner r
```

rand() i-ème appel

```
retourner o[i] = r[i + 344] \gg 1où r[i] = r[i - 3] + r[i - 31] \mod 2^{32}
```

GLIBC random()

init(s): r[1..34]

```
r[0] \leftarrow s

pour i: 1 \le i \le 30

r[i] \leftarrow a \times r[i-1] \mod 2^{32} - 1

pour i: 31 \le i \le 33

r[i] \leftarrow r[i-31]

retourner r
```

rand() i-ème appel

```
retourner o[i] = r[i + 344] \gg 1où

r[i] = r[i - 3] + r[i - 31] \mod 2^{32}
```

sûr?

GLIBC random()

init(s): r[1..34]

$$r[0] \leftarrow s$$

pour $i: 1 \le i \le 30$
 $r[i] \leftarrow a \times r[i-1] \mod 2^{32} - 1$

pour $i: 31 \le i \le 33$
 $r[i] \leftarrow r[i-31]$

retourner r

sûr?

prévisible:

$$o[i] = o[i - 31] + o[i - 3] \mod 2^{31}$$

ou
 $o[i] = o[i - 31] + o[i - 3] + 1 \mod 2^{31}$

rand() i-ème appel

retourner
$$o[i] = r[i + 344] \gg 1$$
où
 $r[i] = r[i - 3] + r[i - 31] \mod 2^{32}$

RC4 (1987)

Etat S: 256 octets

« pointeurs » i,j : 0 <= i,j <= 255

init(s) |s| 40-128 bits

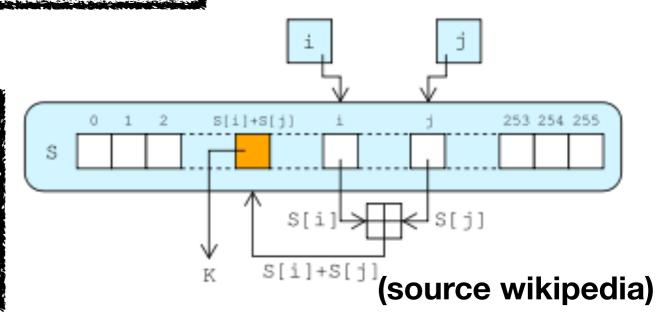
```
for i from 0 to 255 : S[i] = i

j := 0
for i from 0 to 255

j := (j + S[i] + key[i mod |s|]) mod 256
    swap values of S[i] and S[j]
```

Génération

```
i := 0; j:= 0
repeat
i := (i + 1) mod 256
j := (j + S[i]) mod 256
swap values of S[i] and S[j]
output S[(S[i] + S[j]) mod 256]
```



RC4

Utilisation: TLS, WEP

Faiblesses

Biais

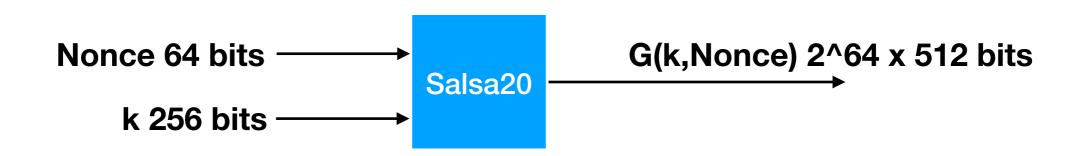
- $\Pr[(o_i, o_{i+1})] = (0,0) \ge 1/256^2 + 1/256^3$
- $Pr[(o_i, o_{i+1})] = (0,1) \ge 1/256^2 + 1/256^3$

Attaque clés proches

- Similarités entre RC4(s) et RC4(s') quand s et s' diffèrent peu
- Attaque du protocole WEP

Salsa20 (2005)

issu d'un processus ouvert de standardisation (eSTream)



```
G(k) /* Nonce = 0 ici */
```

Considéré sûr en pratique

```
for j from 0 to L-1 : S[i] = i
  h[j] := pad(k,j,0) /* 512 bits */
  r[j] := pi(h[j]) XOR h[j]
  output (r[0],...,r[L-1])
```

Générer des bits (vraiment) aléatoires

- Il est parfois nécessaire de générer des bits (vraiment) aléatoires : clé, tirage aléatoire dans certains alg. de chiffrements, etc.
- Comment en pratique cela se fait-il?
 - /dev/random
 - hardware random generator RDRAND (Intel)

Générer des bits (vraiment) aléatoires

Sources d'entropie

- clavier
- souris
- interruptions matérielles

Chiffrement par bloc

block cipher

Chiffrement par bloc

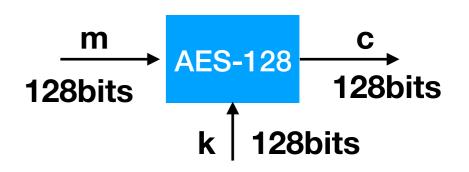
• (Enc,Dec,K,M,C) chiffrement par bloc

•
$$M = C = \{0,1\}^b, K = \{0,1\}^k$$

• b : taille de bloc

Exemples

	k (bits)	b (bits)
DES	56	64
AES-128	128	128
AES-256	256	128



Permutation pseudo-aléatoire

• Soit
$$k \in K$$
. $E_k : \{0,1\}^b \to \{0,1\}^b$

$$E_k : x \to \operatorname{Enc}(k,x)$$

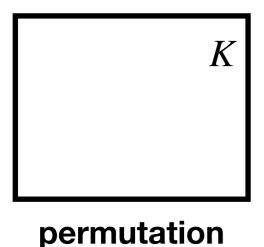
 E_k est une permutation de $\{0,1\}^b$

$$Dec(k, c) = E_k^{-1}(c)$$

Objectif: concevoir Enc (et donc) Dec tel que E_k soit une permutation pseudo -aléatoire

• $f: \{0,1\}^b \to \{0,1\}^b$ permutation pseudo-aléatoire si calculatoirement difficile de distinguer f d'une permutation vraiment aléatoire

Distinguer permutation pseudoaléatoire/vraiment aléatoire



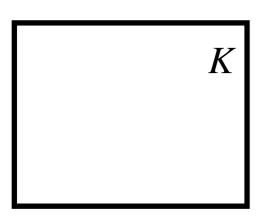
 $E_k: \{0,1\}^b \to \{0,1\}^b, k \in K$

permutation

 $f: \{0,1\}^b \to \{0,1\}^b$

tirée aléatoirement

Distinguer permutation pseudoaléatoire/vraiment aléatoire



permutation

$$E_k: \{0,1\}^b \to \{0,1\}^b, k \in K$$

permutation

$$f: \{0,1\}^b \to \{0,1\}^b$$

tirée aléatoirement

Exemple AES-128

- $K = \{0,1\}^{128}$ $2^{128} \simeq 3,4.10^{38}$ permutation E_k possibles
- b = 128 $(2^{128})! \simeq 10^{10^{40,11}}$ permutations

Distinguer permutation pseudo-aléatoire/aléatoire

Expérience 0

 $k \leftarrow^r \{0,1\}^n$

$$y_i \leftarrow E_k(x_i)$$

Challenger

Adversaire

Perm[$\{0,1\}^b$]

Challenger

Expérience 1



$$W_b$$
 A produit $b'=1$ dans l'expérience b

<u>Avantage</u>

$$Avtg(\mathbf{A}, \mathcal{E}) = |\Pr[W_1] - \Pr[W_0]|$$

avec
$$\mathscr{E} = (\text{Enc}, \text{Dec}, K = \{0,1\}^n, M = C = \{0,1\}^b)$$

Chiffrement par bloc sûr

Soit $\mathscr{E} = (\text{Enc}, \text{Dec}, K = \{0,1\}^n, M = C = \{0,1\}^b)$ un chiffrement par bloc

définition

 \mathscr{E} est $\underline{\hat{sur}}$ ssi pour tout adversaire A efficace, $Avtg(\mathbf{A},\mathscr{E})=\mathrm{negl}$.

Conséquence : recouvrement de clé difficile

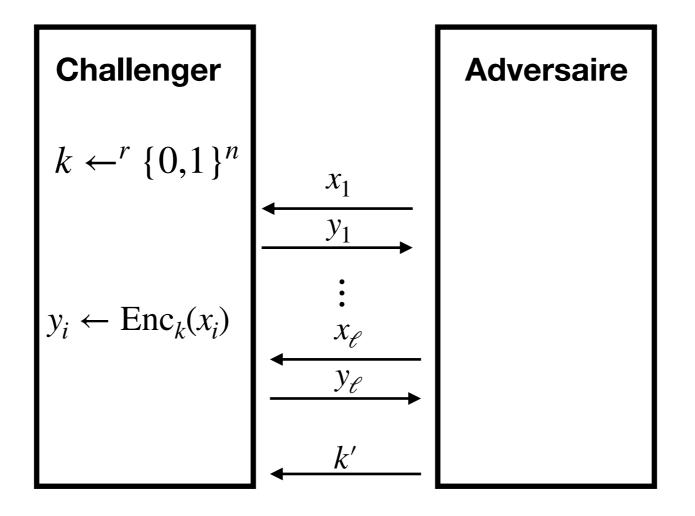
Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K = \{0,1\}^n, M = C = \{0,1\}^b)$ un chiffrement par bloc

Théorème

Si $\mathscr E$ est <u>sûr</u> alors il n'existe pas d'attaque efficace pour recouvrer la clé

La taille *n* des clés doit donc être suffisamment grande pour qu'une attaque par recherche exhaustive soit infaisable en pratique

Recouvrement de clé : modélisation



W A produit k' = k

Recouvrement de clé => non sûr

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K = \{0,1\}^n, M = C = \{0,1\}^b)$ un chiffrement par bloc

- Soit A un adversaire qui recouvre la clé avec proba. p
- Jeu distinction perm. pseudo aléatoire/aléatoire : Adversaire B
 - simule **A** pour obtenir une clé k'
 - soit $\{x_1,\dots,x_q\}=X$ les requêtes effectuées par **A**. Soumet $x_{q+1}\not\in X$ au challenger et obtient y_{k+1}
 - si $y_{q+1} = \operatorname{Enc}(k', x_{q+1})$ produit b' = 0 (non aléatoire) et b' = 1 (aléatoire) sinon

Recouvrement de clé => non sûr

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K = \{0,1\}^n, M = C = \{0,1\}^b)$ un chiffrement par bloc

- Soit A un adversaire qui recouvre la clé avec proba. p
- Jeu distinction perm. pseudo aléatoire/aléatoire : Adversaire B
 - simule **A** pour obtenir une clé k'
 - soit $\{x_1, ..., x_q\} = X$ les requêtes effectuées par **A**. Soumet $x_{q+1} \not\in X$ au challenger et obtient y_{k+1}
 - si $y_{q+1} = \text{Enc}(k', x_{q+1})$ produit b' = 0 (non aléatoire) et b' = 1 (aléatoire) sinon

Sécurité sémantique

Soit $\mathscr{E} = (\text{Enc}, \text{Dec}, K = \{0,1\}^n, M = C = \{0,1\}^b)$ un chiffrement par bloc

- **Sécurité sémantique** : Adv. capable de distinguer Enc(k,m0) et Enc(k,m1) avec proba. non negl.
- **Sûr**: Adv. capable de distinguer interaction avec perm. pseudo aléatoire Enc(k,.) et perm. aléatoire f avec proba. non negl.

théorème

si $\mathscr E$ est sûr alors $\mathscr E$ est sémantiquement sûr

démo. (idée)

- contraposée : non sémantiquement sûr => non sûr
- soit A adv. jeu sécurité sémantique
- adv. B (interagit avec Enc(k,.) ou f): simule A.
- Si A gagne, B produit « non aléatoire », « aléatoire » sinon

Sécurité sémantique

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K = \{0,1\}^n, M = C = \{0,1\}^b)$ un chiffrement par bloc

- **Sécurité sémantique** : Adv. capable de distinguer Enc(k,m0) et Enc(k,m1) avec proba. non negl.
- **Sûr**: Adv. capable de distinguer interaction avec perm. pseudo aléatoire Enc(k,.) et perm. aléatoire f avec proba. non negl.

théorème

si $\mathscr E$ est sûr alors $\mathscr E$ est sémantiquement sûr

limite

taille des messages = taille de bloc b

démo. (idée)

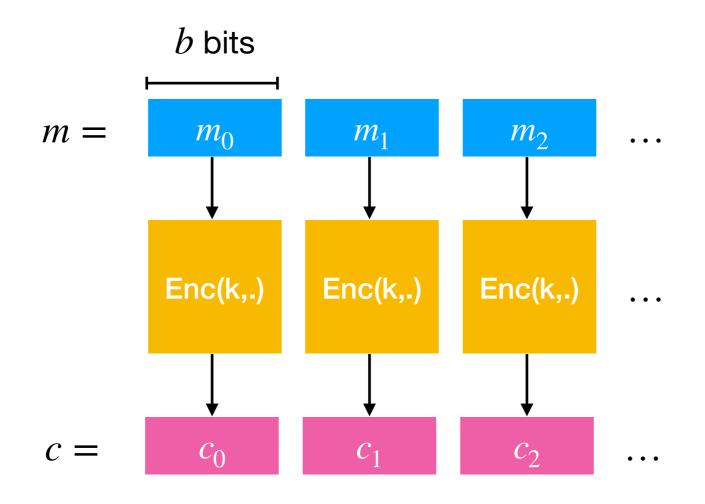
- contraposée : non sémantiquement sûr => non sûr
- soit A adv. jeu sécurité sémantique
- adv. B (interagit avec Enc(k,.) ou f): simule A.
- Si A gagne, B produit « non aléatoire », « aléatoire » sinon

Chiffrement de messages de taille arbitraire

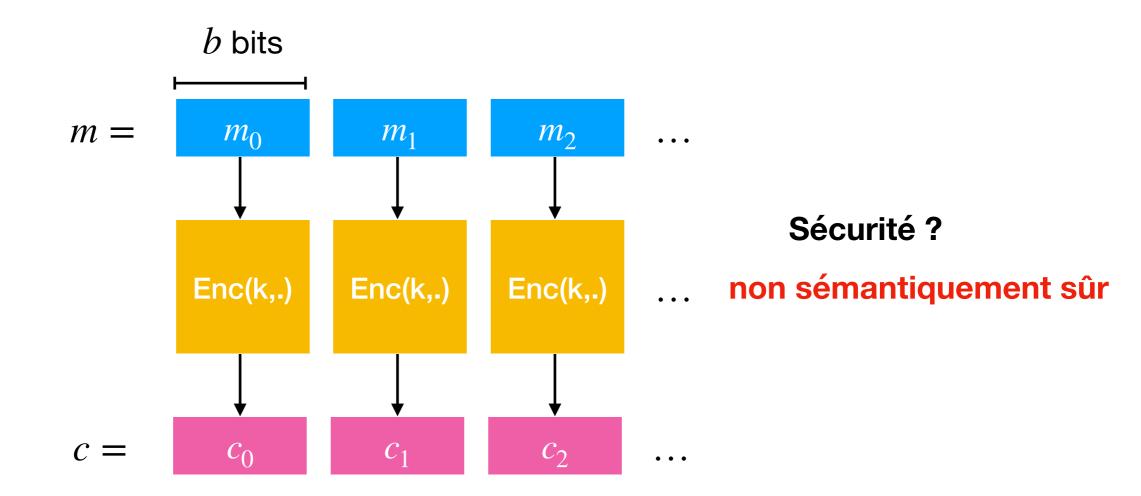
Soit $\mathscr{E}=(\operatorname{Enc},\operatorname{Dec},K=\{0,1\}^n,M=C=\{0,1\}^b)$ un chiffrement par bloc typiquement , $b=\operatorname{qqs}$ centaines de bits

Pb: chiffrement de messages de taille $\ell > b$

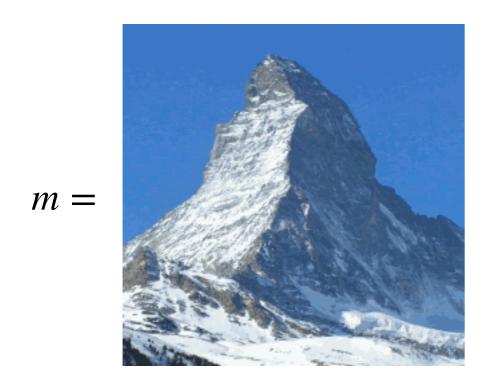
Electronic Code Book

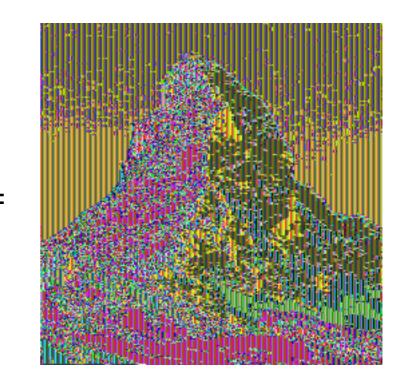


Electronic Code Book



Electronic Code Book





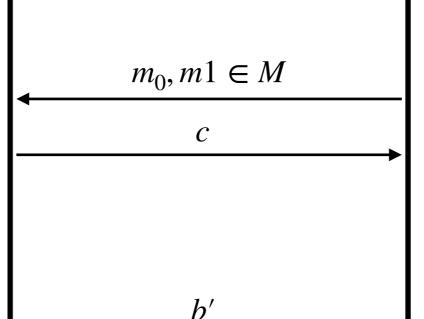
non sémantiquement sûr

source : wikipédia

ECB: (In)sécurité sémantique

Challenger

 $k \leftarrow^r K$ $c \leftarrow \operatorname{Enc}(k, m_b)$



Adversaire

Soit $b \neq b' \in \{0,1\}^b$ $m_0 \leftarrow b \cdot b'; m_1 \leftarrow b \cdot b$

si $\exists x : c = x \cdot x$ alors $b' \leftarrow 1$ sinon $b' \leftarrow 0$

 W_b A produit b'=1 dans l'expérience b

 $Avtg(\mathbf{A},\mathcal{E}) = |\Pr[W_1] - \Pr[W_0]| = 1$

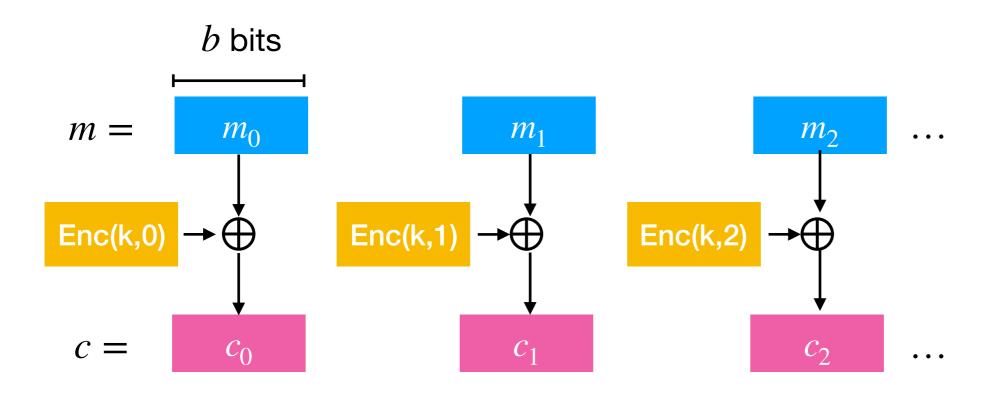
Chiffrement de messages de taille arbitraire

Soit $\mathscr{E}=(\operatorname{Enc},\operatorname{Dec},K=\{0,1\}^n,M=C=\{0,1\}^b)$ un chiffrement par bloc typiquement , $b=\operatorname{qqs}$ centaines de bits

Pb: chiffrement de messages de taille $\ell > b$

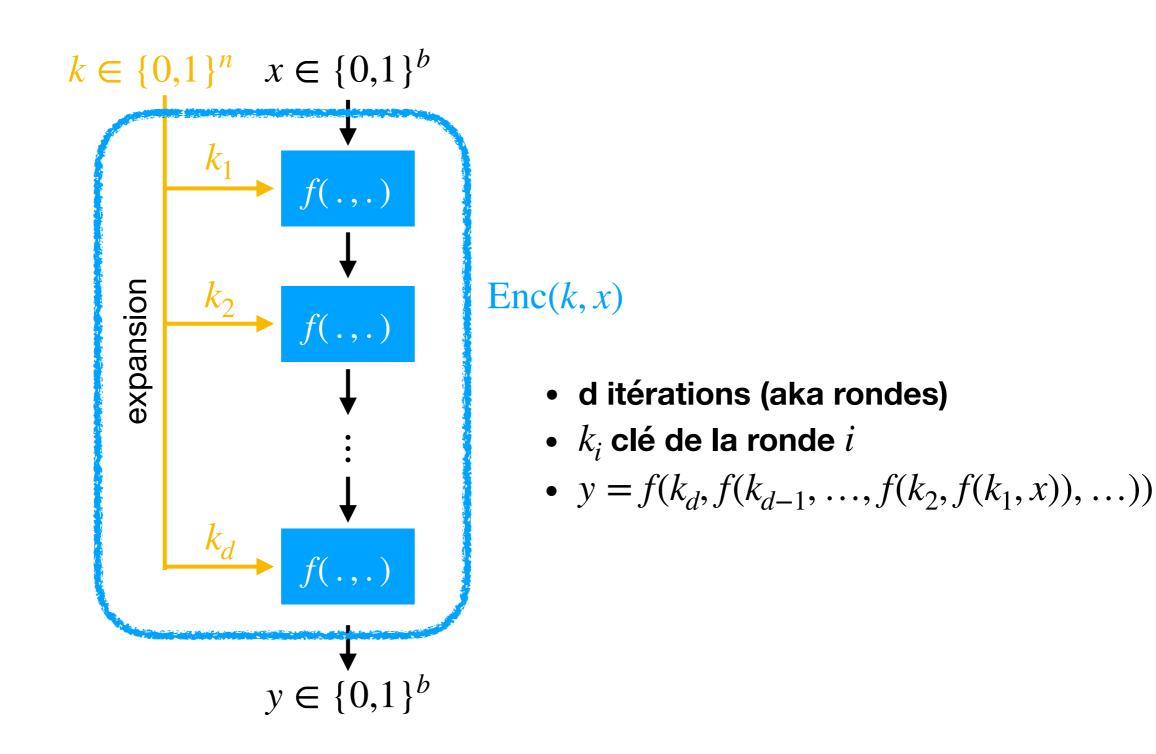
- mode **ECB** non sémantiquement sûr
- d'autres modes existent : CBC Cipher Block Chaining, CFB cipher feedback, OFB output feedback, CTR CouTeR mode, etc.
- cf. TD

Counter mode



Chiffrements par bloc en pratique

Patron de conception



DES/AES

	clé (en bits)	bloc (en bits)	rondes
DES	56	64	16
3DES	168	64	48
AES-128	128	128	10
AES-256	256	128	14

- DES (Data Encryption Standard) 1977
- 3DES (triple DES) : 3 applications de DES avec 3 clés
- AES (Advanced Encryption Standard) 2001

DES

clé (en bits) bloc (en bits) rondes
DES 56 64 16

- Proposé par IBM en 1975. 1ere Version : b = n = 128bits
- Adopté comme standard US en 1977
- Non sûr aujourd'hui: taille des clés (56bits) trop petite.
 Attaque par recherche exhaustive faisable
- 3DES (3 applications de DES, clés 3x56 = 168bits) standard US approuvé jusqu'en 2030

Réseau de Feistel

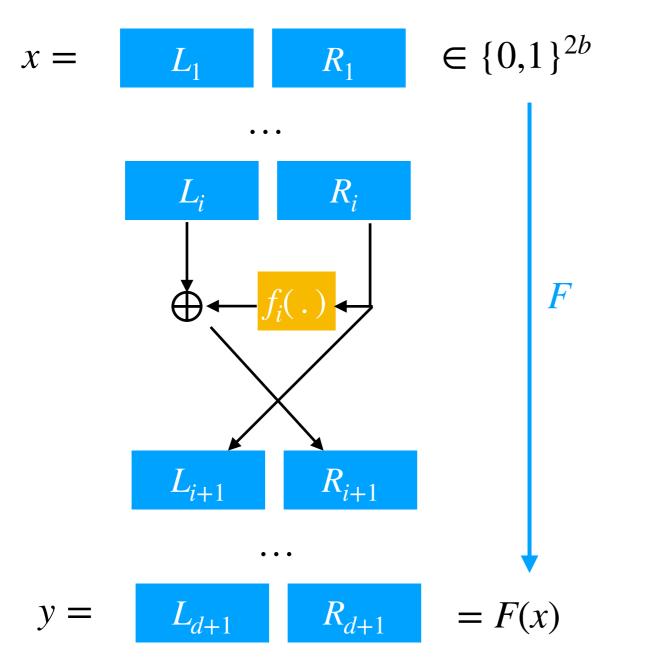
Soit $f_1, ..., f_d: \{0,1\}^b \to \{0,1\}^b$ des fonctions arbitraires

but: construire $F: \{0,1\}^{2b} \rightarrow \{0,1\}^{2b}$ permutation

Réseau de Feistel

Soit $f_1, ..., f_d: \{0,1\}^b \to \{0,1\}^b$ des fonctions arbitraires

but: construire $F: \{0,1\}^{2b} \rightarrow \{0,1\}^{2b}$ permutation

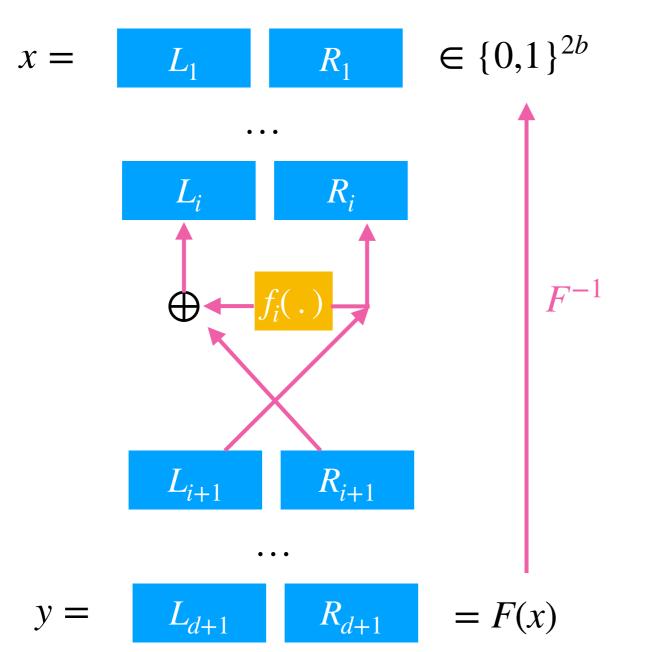


$$R_{i+1} = L_i \oplus f(R_i)$$
$$L_{i+1} = R_i$$

Réseau de Feistel

Soit $f_1, ..., f_d: \{0,1\}^b \to \{0,1\}^b$ des fonctions arbitraires

but: construire $F: \{0,1\}^{2b} \rightarrow \{0,1\}^{2b}$ permutation



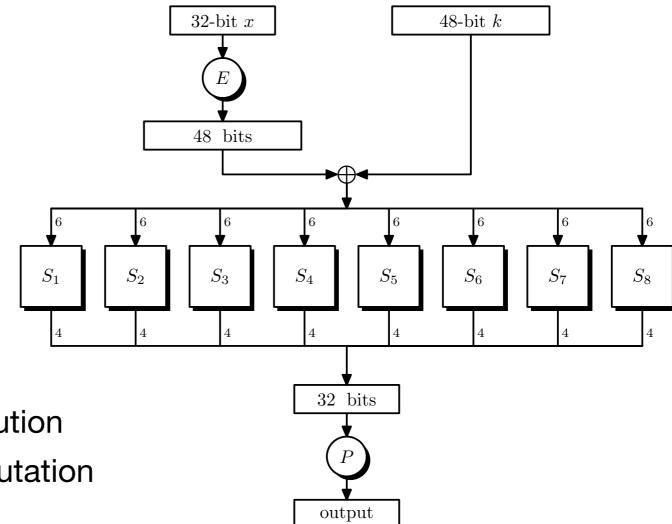
$$R_{i+1} = L_i \oplus f(R_i)$$
$$L_{i+1} = R_i$$

$$R_i = L_{i+1}$$

$$L_i = R_{i+1} \oplus f(L_{i+1})$$

DES

- Réseau de Feistel à 16 rondes
- Fonction de ronde $f_i: \{0,1\}^{32} \to \{0,1\}^{32}$



- $S_i: \{0,1\}^6 \to \{0,1\}^4$ substitution
- $P: \{0,1\}^{32} \to \{0,1\}^{32}$ permutation

source: Boneh & Shoup

Challenge DES

Challenge

- étant donné $(x_1, y_1 = \text{Enc}(k, x_1)), (x_2, y_2 = \text{Enc}(k, x_2)), (x_3, y_3 = \text{Enc}(k, x_3)), y_4, \dots, y_n$
- trouver x_4, \ldots, x_n tels que $\operatorname{Enc}(k, x_i) = y_i, 4 \le i \le n$

Résultats

- 1997 : projet DESCHALL 96jours, recherche de la clé répartie sur Internet (~78000 participants)
- 1998 : projet <u>distributed.net</u> 41j recherche répartie à plus grande échelle
- 1998 : deepcrack machine spécialisée 56h, 250000\$
- 1999 : deepcrack + distributed.net 22h
- 2007 : COPACOBANA 120FGPA 12,6j, ~10000\$

3DES

$$K = \{0,1\}^{56} \times \{0,1\}^{56} \times \{0,1\}^{56}$$

b = 64bits (même taille de bloc que DES)

3DES
$$((k_1, k_2, k_3), x) = DES(k_1, DES^{-1}(k_2, DES(k_3, x)))$$

3DES $^{-1}((k_1, k_2, k_3), y) = DES^{-1}(k_3, DES(k_2, DES^{-1}(k_1, y)))$

rétro-compatibilité : 3DES((k, k, k), x) = DES(k, x)

3DES

$$K = \{0,1\}^{56} \times \{0,1\}^{56} \times \{0,1\}^{56}$$

b = 64bits (même taille de bloc que DES)

3DES
$$((k_1, k_2, k_3), x) = DES(k_1, DES^{-1}(k_2, DES(k_3, x)))$$

3DES $^{-1}((k_1, k_2, k_3), y) = DES^{-1}(k_3, DES(k_2, DES^{-1}(k_1, y)))$

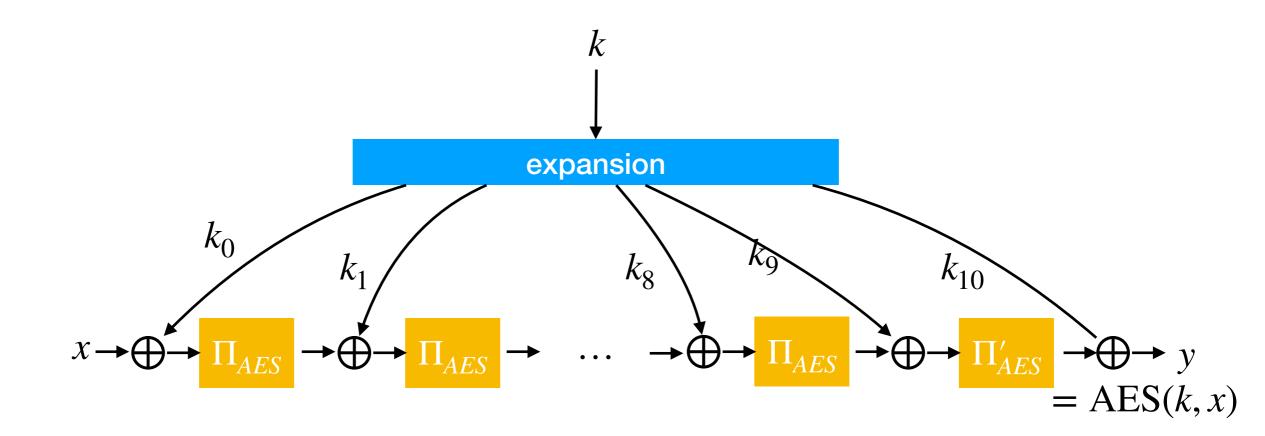
rétro-compatibilité : 3DES((k, k, k), x) = DES(k, x)

pourquoi pas 2DES ? cf. TD

AES

- Advanced Encryption Standard, 2000
- Issu d'un processus de sélection ouvert 1997-2000
- Auteurs Joan Daemen et Vincent Rijmen
- taille de la clé : 128,192 ou 256 bits
- taille de bloc : 128

AES-128



- $\Pi_{AES}, \Pi'_{AES}: \{0,1\}^{128} \to \{0,1\}^{128}$ permutations
- 10 rondes

Attaques

- Recherche exhaustive, « brute-force »
- Cryptanalyse linéaire
- Attaque par canaux cachés (« side-channel attacks »)
- Recherche exhaustive par machine quantique

Recherche exhaustive

- Etant donné $(x_1,y_1=\operatorname{Enc}(k,x_1)), \ldots, (x_\ell,y_\ell=\operatorname{Enc}(k,x_\ell)), \text{ trouver } k$
- Typiquement pour $\ell = 3$, unique clé solution
- Attaque à texte clair connu
- AES-128 : 2^{56} clés -> 22heures. 2^{128} clés -> ???

Recherche exhaustive

- Etant donné $(x_1,y_1=\operatorname{Enc}(k,x_1)),\ldots,(x_\ell,y_\ell=\operatorname{Enc}(k,x_\ell)), \text{ trouver } k$
- Typiquement pour $\ell = 3$, unique clé solution
- Attaque à texte clair connu
- AES-128 : 2^{56} clés -> 22heures. 2^{128} clés -> $2^{128-56} \times 22h \simeq 1.18.10^{20}$ ans

Cryptanalyse linéaire

- Identifier des relations linéaires entre bits de la clé et bits des messages clairs/chiffrés
- Soit $\mathscr{E} = (\text{Enc}, \text{Dec}, K = \{0,1\}^n, M = C = \{0,1\}^b)$
- Relation linéaire s'il existe

$$S_1, S_2 \subseteq \{1, ..., b\}, S_3 \subseteq \{1, ..., n\}, \epsilon \text{ t.q.}$$

$$\Pr\left[\bigoplus_{i \in S_1} m[i] \oplus \bigoplus_{i \in S_2} \operatorname{Enc}(k, m)[i] = \bigoplus_{j \in S_3} k[j]\right] \ge 1/2 + \epsilon$$

Cryptanalyse linéaire

- DES : relation linéaire avec $\epsilon \simeq 2^{-21}$
- Retrouver 26 bits de la clés avec $\simeq 2^{43}$ messages clairs/chiffrés avec probabilité $\simeq 0.85$
- 56 26 = 30 bits restant recouvré par recherche exhaustive

Attaque par canaux cachés

- Mesure (fine) du temps de chiffrement/déchiffrement peut révéler des informations sur la clé
- Energie consommée peut révéler des informations sur la clé
- Attaque sur AES fondée sur effet de cache. même instruction a des temps d'exécutions significativement différents selon que la donnée est présente ou non dans le cache
- $\bullet \ \ \text{AES-128}: 2^{20} \ \ \text{mesures, qqs minutes pour retrouver la cl\'e}$

Recherche exhaustive quantique

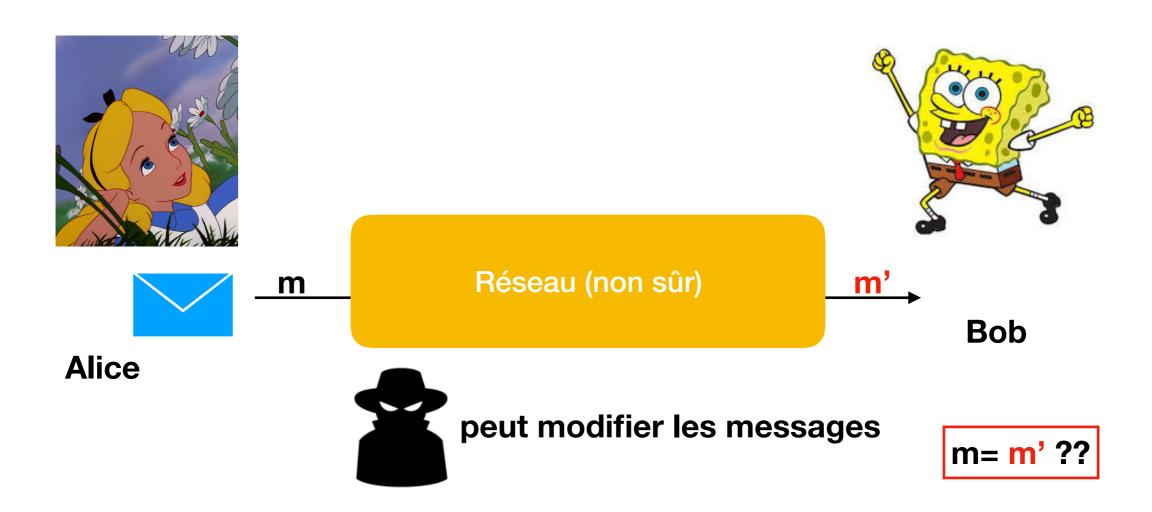
- Algorithme de Grover
- Entrée : accès « boite noire » à $f:\mathcal{K} \to \{0,1\}$ avec $f(k)=1\iff k=k_0$
- Sortie : k_0
- Complexité ?

Recherche exhaustive quantique

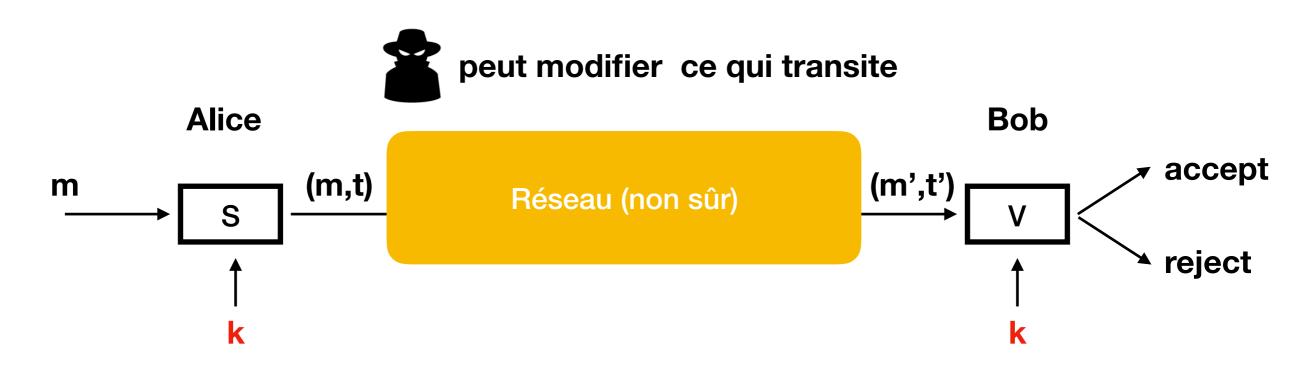
- Algorithme de Grover
- Entrée : accès « boite noire » à $f:K \to \{0,1\}$ avec $f(k)=1 \iff k=k_0$
- Sortie : k_0
- Complexité $O(\sqrt{K} \times C_f)$

Recherche exhaustive quantique

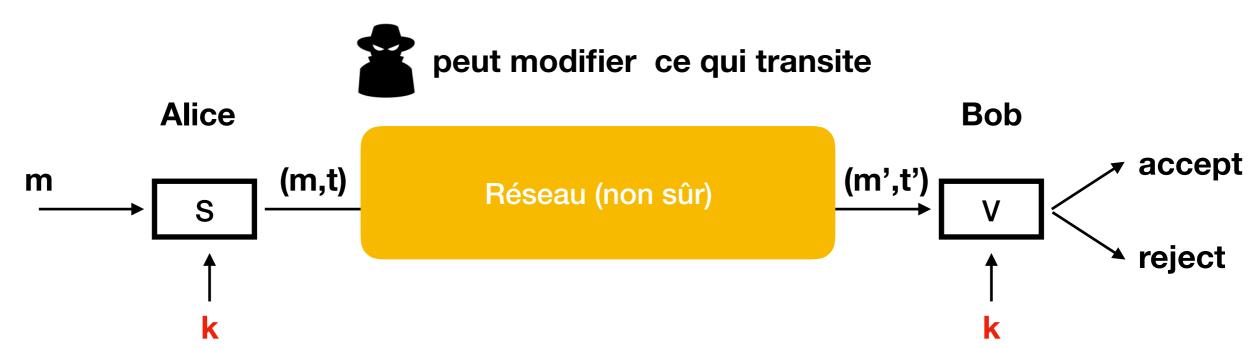
- Algorithme de Grover
- Entrée : accès « boite noire » à $f: \mathcal{K} \to \{0,1\}$ avec $f(k) = 1 \iff k = k_0$
- Sortie : *k*₀
- Complexité $O(\sqrt{K} \times C_f)$
- Application: AES-128
- Soit $m_1, ..., m_d, c_1, ..., c_d$: $\forall i, c_i = \text{Enc}(k_0, m_i)$
- Soit $f: K \to \{0,1\}$ définie par $f(k) = 1 \iff \forall 1 \le i \le d, \operatorname{Enc}(k, m_i) = c_i$
- Grover : clé recouvrée après $\simeq d \times 2^{64}$ évaluations d'AES



m' est-il authentique ? (On ne s'intéresse pas à la confidentialité ici)

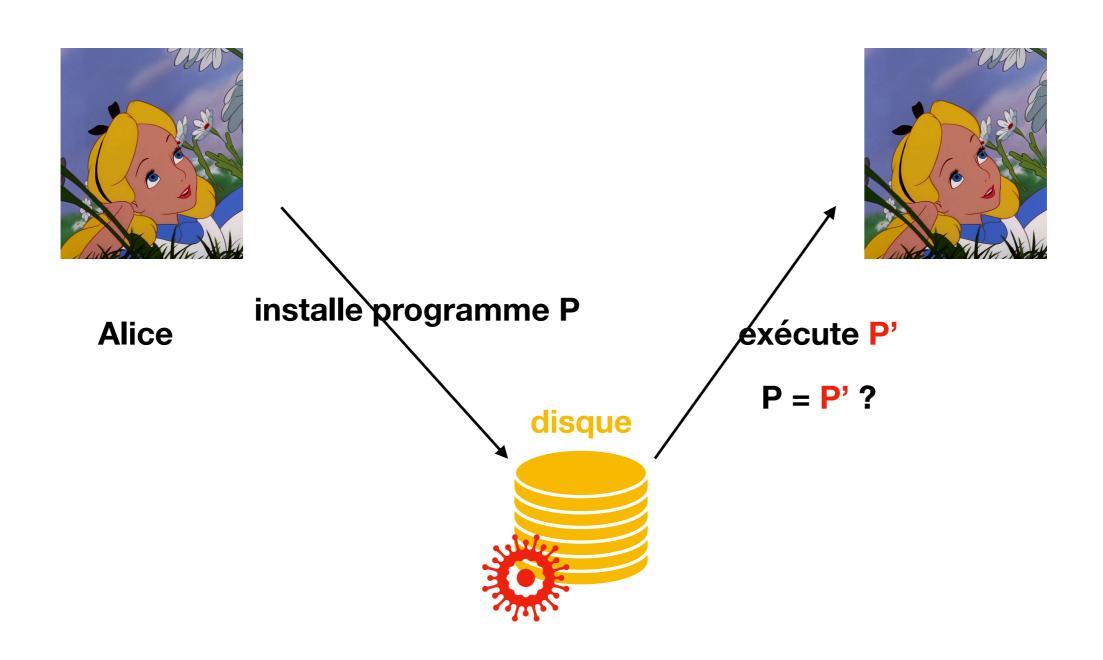


- **S, V**: algorithmes de signature/vérification
- k: clé secret partagé par Alice et Bob
- **m**: message
- t: tag (ou signature ou code d'authentification de message MAC)

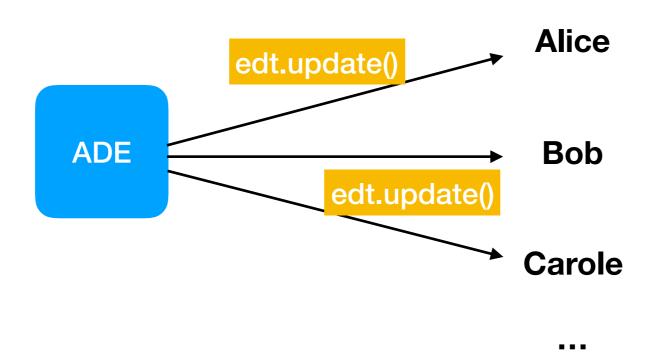


- S, V: algorithmes de signature/vérification
- k: clé secret partagé par Alice et Bob
- m:message
- t: tag (ou signature ou code d'authentification de message MAC)
- S (m:message, k:clé) -> tag
- V (m:message, k:clé, t:tag) -> booléen

Exemple



Exemple



- · Authenticité des mises à jour ?
- · Confidentialité non-requise : emploi du temps public

Système d'authentification de messages

Peut-on concevoir un système d'authentification de messages sans clé secrète ?

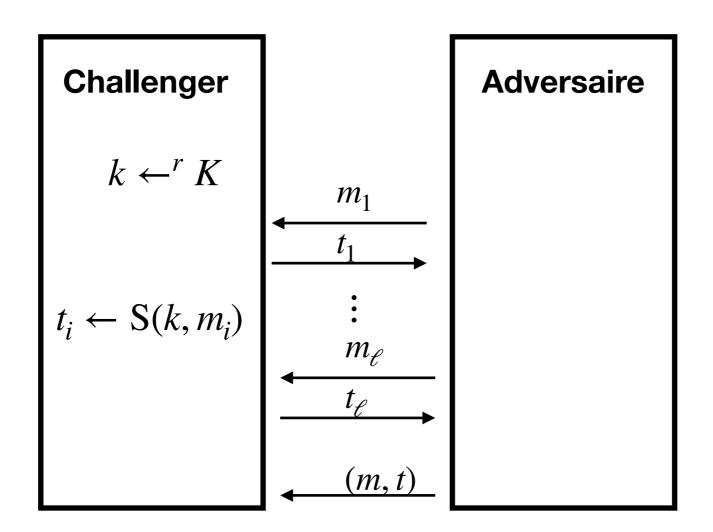
Système d'authentification de messages (MAC)

```
(S, V, K, M, T)
```

- M: ens. des messages
- · K : ens. des clés
- T : ens. des tags
- S: K x M → T alg. de signature, probabiliste généralement
- V : K x M x T $\rightarrow \{0,1\}$ alg. de verification

Validité: $\forall m \in M, \forall k \in K, V(m, k, S(m, k)) = 1$

Sécurité : contrefaçon existentielle



W A produit $(m, t) \in M \times T$ avec V(m, t) = 1 et $(m, t) \neq (m_i, t_i), 1 \leq i \leq \ell$

<u>Avantage</u>

Avtg(A) = Pr[W]

Sécurité : contrefaçon existentielle

Soit I = (S, V, K, M, T) un système d'authentification de message

I est sûr si et seulement si pour tout adversaire A efficace, $\mathrm{Avtge}(A,I) = \mathsf{negl}$.

Rappel: fonction-pseudo aléatoire

Soit $F: K \times X \rightarrow Y$

Pour $k \in K$, soit $f_k : x \to F(k, x)$

 f_k est *pseudo-aléatoire* s'il est calculatoirement difficile de distinguer f_k d'une fonction $X \to Y$ tiré aléatoirement

Rappel: fonction pseudoaléatoire

Expérience 0

 y_{ℓ}

Challenger

$$k \leftarrow^r \{0,1\}^n$$

$$y_i \leftarrow f_k(x_i)$$

Adversaire

Challenger

$$f \leftarrow^r$$
 Func[X, Y]

$$y_i \leftarrow f(x_i)$$

Expérience 1

Adversaire

$$\begin{array}{c}
x_1 \\
y_1 \\
\vdots \\
x_{\ell}
\end{array}$$

$$\leftarrow$$
 y_{ℓ}

 W_b A produit b'=1 dans l'expérience b

<u>Avantage</u>

 $Avtg(\mathbf{A}, F) = |\Pr[W_1] - \Pr[W_0]|$

Rappel: fonction pseudoaléatoire

Soit $F: K \times X \rightarrow Y$ est pseudo-aléatoire ssi

- Il existe un alg. efficace pour calculer F
- Pour tout adversaire A. efficace, Avtge(A, F) = negl.

Fonction pseudo-aléatoire en pratique : AES, 3DES, etc.

Construction: MAC à partir de fonctions pseudo-aléatoires

Soit $F: K \times X \rightarrow Y$ pseudo-aléatoire alors I = (S, V, K, M, T) avec

- M = X, T = Y
- S(k,m) = F(k,m)
- V(k, m, t) = 1 si F(k, m) = t, 0 sinon est un système d'authentification sûr

Construction: MAC à partir de fonctions pseudo-aléatoires

Soit $F: K \times X \rightarrow Y$ pseudo-aléatoire alors I = (S, V, K, M, T) avec

- M = X, T = Y
- S(k, m) = F(k, m)• V(k, m, t) = 1 si F(k, m) = t, 0 sinon est un système d'authentification sûr

limite : taille des messages fixée et petite (ie, 128bits pour AES) solution : étendre le domaine des fonctions pseudo-aléatoires

Construction: MAC à partir de fonctions pseudo-aléatoires

limite : taille des messages fixée et petite (ie, 128bits pour AES) solution : étendre le domaine des fonctions pseudo-aléatoires

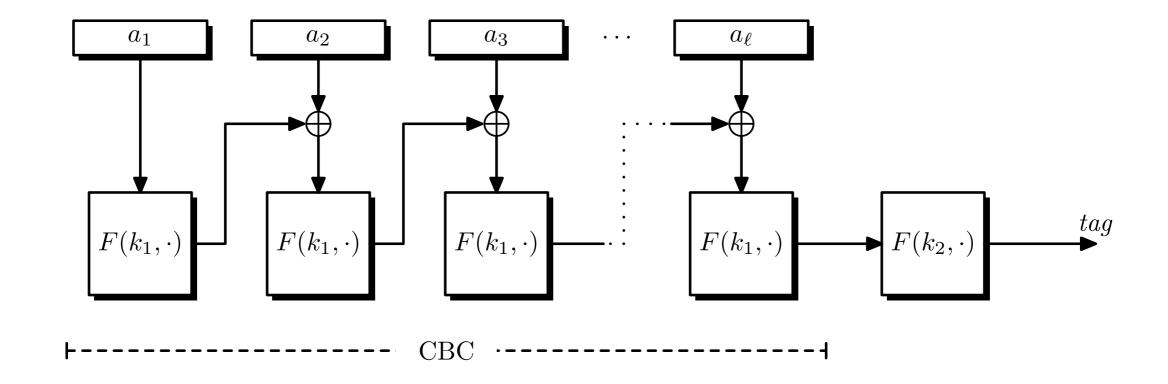
```
Soit F: K \times \{0,1\}^b \to \{0,1\}^b pseudo- aléatoire but : construire F^*: K \times \{0,1\}^\ell \to \{0,1\}^b, avec \ell \gg b pseudo-aléatoire
```

Idée: chainage

ECBC

Encrypted Cipher Block Chaining (ANSI/ISO standard)

$$k = (k_1, k_2)$$



source: Boneh Shoup

Fonctions de Hachage (cryptographiques)

 $H: M \rightarrow T$ fonction de hachage

- $\cdot |T| \ll |M|$
- ullet II existe un Alg. efficace pour calculer H

Fonctions de Hachage (cryptographiques)

 $H: M \rightarrow T$ fonction de hachage

- $|T| \ll |M|$
- ullet II existe un Alg. efficace pour calculer H

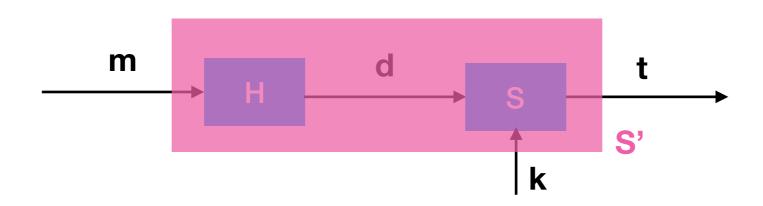
Résistance aux collisions

Pour tout adv. A efficace, proba. produire $m_0 \neq m_1: H(m_0) = H(m_1)$ est negl

Exemple SHA256.
$$T = \{0,1\}^{256}$$
, $M = \{0,1\}^{2^{64}}$

Authentification pour de longs messages « hacher puis signer »

- $H: \{0,1\}^{\ell} \rightarrow \{0,1\}^{b}$ hachage résistant aux collisions
- $I = (S, V, K, M = \{0,1\}^b, T = \{0,1\}^b)$ système d'authentification sûr

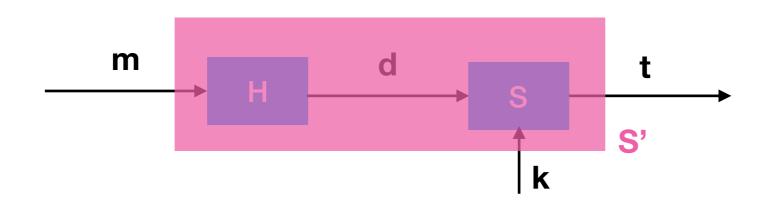


$$I' = (S', V', K, M' = \{0,1\}^{\ell}, C)$$
 avec
• $S'(k, m) = S(k, H(m))$

- V'(k, m, t) = V(k, H(m), t)est un système d'authentification sûr

Authentification pour de longs messages « hacher puis signer »

- $H: \{0,1\}^{\ell} \to \{0,1\}^{b}$ hachage résistant aux collisions
- $I = (S, V, K, M = \{0,1\}^b, T = \{0,1\}^b)$ système d'authentification sûr



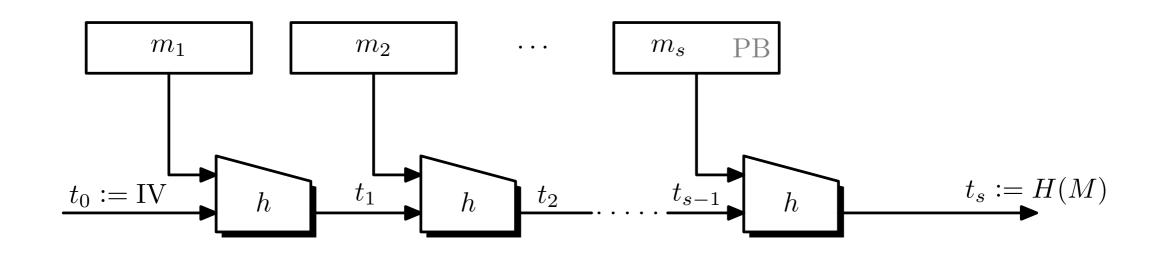
$$I' = (S', V', K, M' = \{0,1\}^{\ell}, C)$$
 avec

- S'(k, m) = S(k, H(m))
- V'(k, m, t) = V(k, H(m), t)est un système d'authentification sûr

limites:

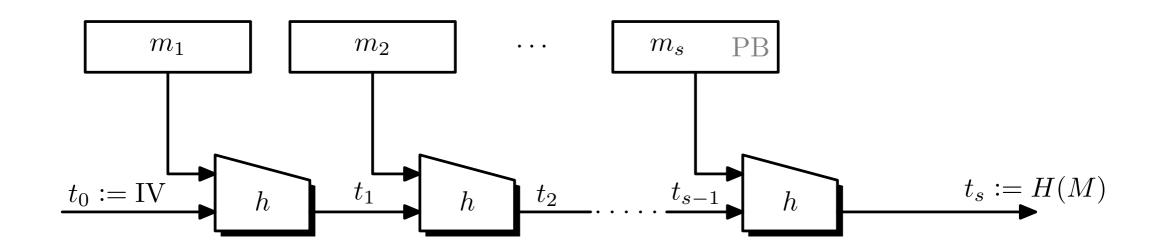
- Besoin : hachage $H ext{ et } \mathsf{MAC} \ I$
- \cdot Collision pour H casse le système

Fonction de hachage: construction de Merkle-Damgard



- $h: K \times \{0,1\}^{\ell} \to \{0,1\}^n$ fonction de compression
 - $h_k: x \to h(k, x)$ est une fonction de hachage
- IV : valeur initiale fixée, connue e.g. 0....0
- PB : padding block de la forme 10...0 | s

Fonction de hachage: construction de Merkle-Damgard

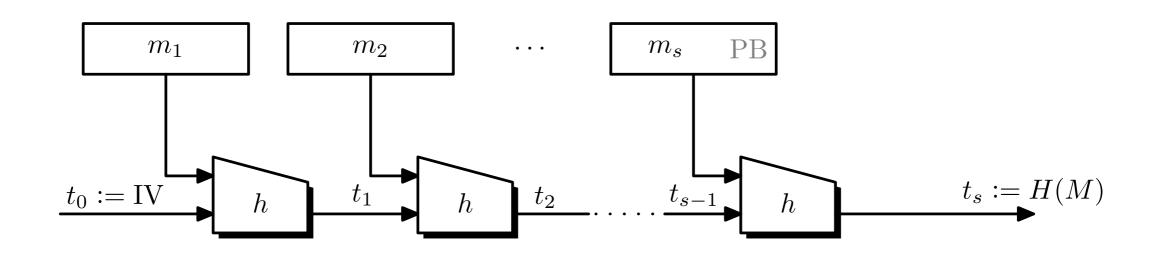


- $h: K \times \{0,1\}^{\ell} \to \{0,1\}^n$ fonction de compression
 - $h_k: x \to h(k, x)$ est une fonction de hachage
- IV : valeur initiale fixée, connue e.G. 0....0
- PB : padding block de la forme 10...0 ∥ s

SHA256

- $\ell = 512, n = 256, K = \{0,1\}^{256}$
- IV valeur compliquée sur 256 bits
- s: 64 bits

Fonction de hachage: construction de Merkle-Damgard



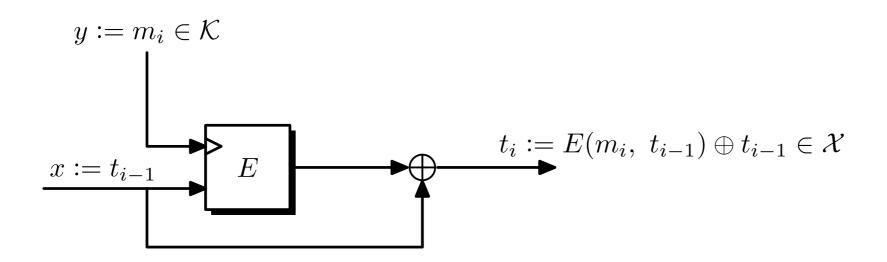
- $h: K \times \{0,1\}^{\ell} \to \{0,1\}^n$ fonction de compression
 - $h_k: x \to h(k, x)$ est une fonction de hachage
- IV : valeur initiale fixée, connue e.G. 0....0
- PB : padding block de la forme 10...0 || s

théorème

Si h est résistant aux collisions alors H l'est aussi

Fonction de compression h construction de Davies-Meyer

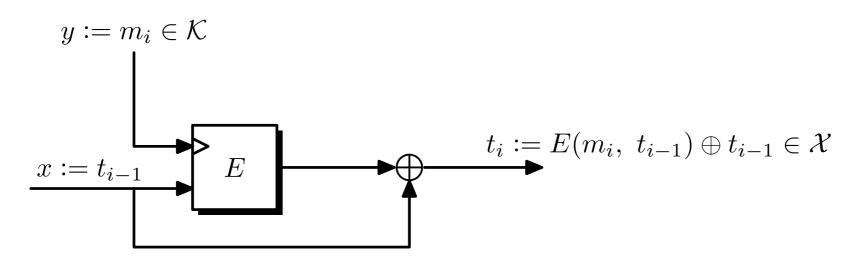
Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K, X, Y)$ un chiffrement par bloc avec X = Y



 $h: X \times K \to X$ définie par $h(x, y) = \operatorname{Enc}(y, x) \oplus x$ est une fonction de compression

Fonction de compression h construction de Davies-Meyer

Soit $\mathscr{E} = (\operatorname{Enc}, \operatorname{Dec}, K, X, Y)$ un chiffrement par bloc avec X = Y



théorème:

Si \mathscr{E} est sûr alors h est résistant aux collisions

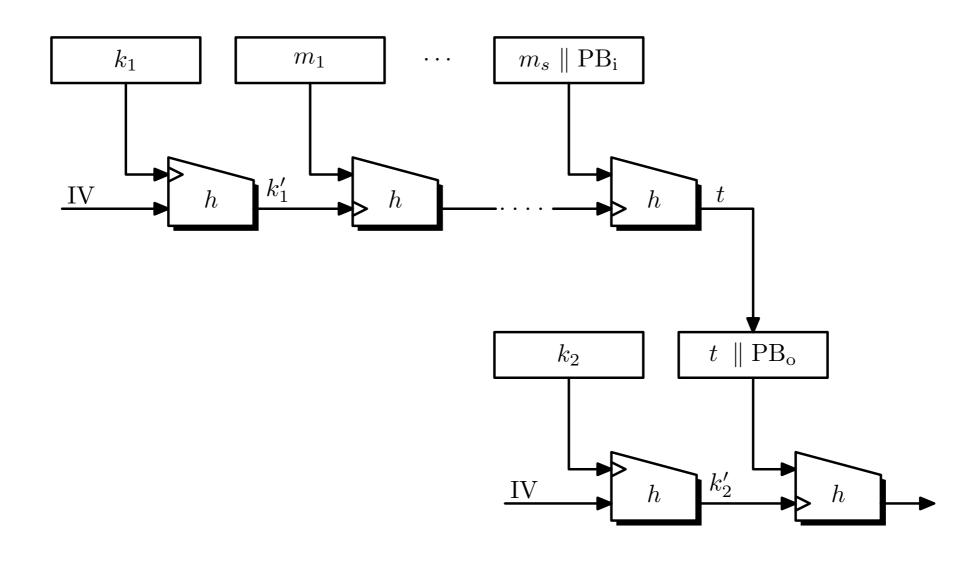
est idéalement sûr

limites : taille de bloc doit être relativement grande (128 bits insuffisant)

HMAC

- Signer des messages longs
- Système d'authentification n'utilisant qu'une fonction de hachage
- Que faire de la clé ??

HMAC



 $S((k_1, k_2), m) = H(k_2 \cdot H(k \cdot m_1 \cdot PB_i) \cdot PB_o)$

Fonction de Hachage autres notions de sécurité

- Soit $H: M \to T$ une fonction de hachage
- H est **résistant à la seconde pré-image** si étant donné m, il est calculatoirement difficile de trouver $m' \neq m : H(m) = H(m')$
- H est **à sens unique** si étant donné t = H(m), il est calculatoirement difficile de trouver m': H(m') = t

Fonction de Hachage autres notions de sécurité

- Soit $H: M \to T$ une fonction de hachage
- H est **résistant à la seconde pré-image** si étant donné m, il est calculatoirement difficile de trouver $m' \neq m : H(m) = H(m')$
- H est à sens unique si étant donné t = H(m), il est calculatoirement difficile de trouver m': H(m') = t

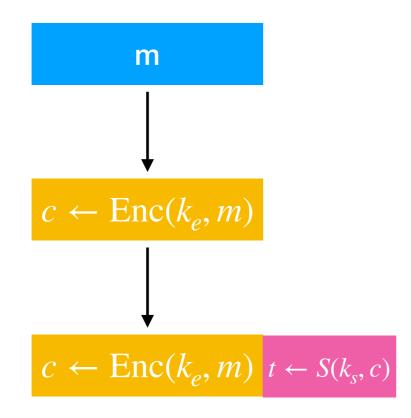
H est à collision difficile $\Longrightarrow H$ est résistant à la seconde préimage $\Longrightarrow H$ est à sens unique

Intégrité et Confidentialité

(authenticated encryption)

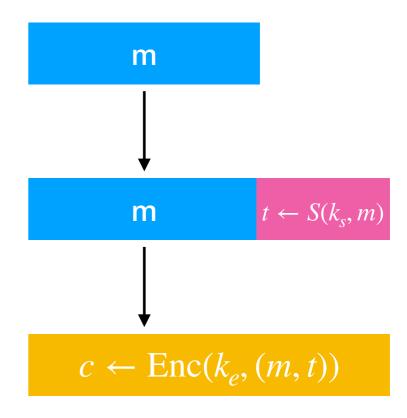
Chiffrer et signer

chiffrer puis signer



TLS 1.2, IPsec, Galois Counter Mode

signer puis chiffrer



TLS 1.0, 802.11i WiFi

Correct : chiffrer puis signer. chiffrement sûr + signature sûre => chiffrement authentifié